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Abstract

Though the study of grounding is still in the early stages, Kit Fine, in
”The Pure Logic of Ground”, has made a seminal attempt at formaliza-
tion. Formalization of this sort is supposed to bring clarity and precision
to our theorizing, as it has to the study of other metaphysically important
phenomena, like modality and vagueness. Unfortunately, as I will argue,
Fine ties the formal treatment of grounding to the obscure notion of a
weak ground. The obscurity of weak ground, together with its centrality
in Fine’s system, threatens to undermine the extent to which this formal-
ization offers clarity and precision. In this paper, I show how to overcome
this problem. I describe a system, the logic of strict ground (LSG) and
demonstrate its adequacy; I specify a translation scheme for interpreting
Fine’s weak grounding claims; I show that the interpretation verifies all
of the principles of Fine’s system; and I show that derivability in Fine’s
system can be exactly characterized in terms of derivability in LSG. I

conclude that Fine’s system is reducible to LSG.

A number of contemporary metaphysicians are exploring the nature and
uses of a phenomenon known as grounding. These thinkers link grounding to a
certain kind of explanation. Philosophers and scientists are fond of asking for
explanations of this kind: “In virtue of what is murder wrong?” “In virtue of
what am I justified in believing that I have hands?” “What makes gravity such
a weak force?” Each question sets the stage for a more or less familiar ongoing
research program. Each question calls for an explanation. A correct answer to
each question will tell us which are the facts in virtue of which something is the
case. In general, the facts that ground a given fact are the facts in virtue of
which that fact obtains.!

IEnthusiasts of grounding agree that facts may ground other facts, but they split on



Proponents of grounding have claimed that it is the key to understanding
certain traditionally recognized metaphysical investigations. Grounding is use-
ful for helping us characterize and pursue investigations concerning realism and
anti-realism in various domains [Fine, 2001]. Grounding provides a way of mak-
ing sense of interesting kinds of metaphysical dependence [Correia, 2008]. Tt
provides a way of articulating a sensible form of nominalism about properties
[Melia, 2005]. It is the notion needed to characterize physicalism [Schaffer, 2009,
2003]. It provides a way of reconciling a sparse inventory of fundamental enti-
ties with the rich ontological commitments of the special sciences [Armstrong,
1997], [Cameron, 2008], [Schaffer, 2007, 2009, 2010]. In short a, or perhaps the,
central concern of metaphysics is saying what grounds what, thereby limning
the structure of reality.

Any tool with such disparate and important uses deserves close scrutiny.
An investigation into the susceptibility of grounding to formal treatment is an
important component of such scrutiny. Though the study of grounding is still
in the early stages, Kit Fine, in “The Pure Logic of Ground” [Fine, 2012a],
has made a seminal attempt at formalization. Formalization of this sort is
supposed to bring clarity and precision to our theorizing, as it has to the study
of other metaphysically important phenomena, like modality and vagueness.
Unfortunately, as I will argue, Fine ties the formal treatment of grounding to
the obscure notion of a weak ground. The obscurity of weak ground, together
with its centrality in Fine’s system, threatens to undermine the extent to which
this formalization offers clarity and precision. In this paper, I show how to

overcome this problem.

whether grounding relates things other than facts; Schaffer [2009] contends that it does, and
Fine [2001, 2012a] disagrees. If Schaffer is correct, then Fine’s formal treatment of ground
may be incomplete. I take no stand on this dispute here. Fine also argues in [Fine, 2001] that,
strictly speaking, we don’t need to reify facts and claim that grounding is a relation between
them in order to give a theory of ground; we may instead treat talk of grounding’s being a
relation between facts as a mere facon de parler. We should formalize our theory of ground
by appeal to sentential operators which do not pick out any relation, and whose arguments,
semantically speaking, do not pick out entities. According to Fine, the logical treatment of
such a sentential operator need not commit us to an ontology of facts. It should be noted,
however, that Fine’s semantic treatment in [Fine, 2012a] appeals to an ontology of facts. I
will follow Fine in couching what follows in terms of facts and the grounding relations they
may bear to one another. I presume that, if Fine’s semantics can be understood so as not to
engage the ontology of facts, what I say can similarly be recast.



1 Weak Ground in the Pure Logic of Ground

In Fine’s system, which he calls the pure logic of ground (PLG), grounding
claims vary along two independent axes: (i) a grounding claim may either be
partial or full; and () it may either be strict or weak. There are thus four types
of grounding claim in Fine’s system. Corresponding to each type of grounding

claim is a symbol in the language of PLG:

‘ strict weak
full < <
partial =< =<

The difference between a full grounding claim and a corresponding partial
grounding claim is relatively clear: a partial ground for a fact ¢ is some fact
that is a (perhaps improper) part of a full ground for ¢: a partial ground of ¢ is
either itself a full ground for ¢, or is one of a plurality of facts that fully ground
¢.2  And the notion of a strict ground for ¢ is the relatively familiar notion of
a fact in virtue of which ¢ obtains.

The notion of weak ground is obscure by comparison. What is a weak ground
for a fact ¢? Fine takes two claims about weak ground as axiomatic: (i) that
every strict ground for ¢ is also a weak ground for ¢; and (4i) that every fact is
a weak ground for itself. This second claim marks a contrast with strict ground,
which is taken by Fine (along with most other philosophers working on ground)
to be irreflexive. Still, these two claims fall far short of a characterization of
what weak ground comes to.

The obscurity, or at least unfamiliarity, of the notion of weak ground is
discomfiting in large measure because of the importance the notion has in de-
veloping PLG. According to Fine, “it turns out that the most natural way of
developing a logic of strict ground is by combining it with the logic of weak
ground” (p. 1). If PLG represents the best way to develop a logic of ground,
and PLG crucially relies on a notion that is unclear or problematic, then we

might worry that the logic of ground is itself problematic. It is difficult to assess

2This rough and ready explanation of the notion of a partial grounding claim explains that
notion in terms of full grounding. I do not mean by these informal remarks to undertake
any commitment on the interesting question of whether partial grounding is ultimately to be
analyzed in terms of full grounding. The characterization in the main text is deployed merely
as an intuitive aid to the reader’s understanding. Fine specifies a number of distinct notions
of partial ground, not all of which can be characterized in the way suggested in the main text.
See [Fine, 2012b, pp. 53-4] in particular for an argument that strict partial ground cannot be
characterized in that way.



the plausibility of the logical principles on offer if we don’t understand one of
the notions used to frame those principles. Worse, if the best way of giving a
formal treatment of the notion of strict ground turns out to rely on an unclear
notion, then we might worry that the notion of strict ground also stands in need
of clarification. The worry here is akin to Quine’s complaint that modal logic
yielded only an “illusion of understanding” of the notion of necessity, since, he
claimed, it relied on a confusion of use and mention [Quine, 1966, p. 176]. If
formal treatment of strict ground relies on an obscure notion, then we have
reason to suspect that the notion so treated is obscure.

Fine offers two characterizations of weak ground. There are two further
characterizations that may be gleaned from what he says. Still, as [ will argue in
the next section, none of these characterizations offers a satisfactory explication
of the notion of weak ground.

Fine never claims that weak ground is indispensable for formulating the logic
of ground. Instead he makes the weaker claim that treating the logic of strict
ground in isolation leads to “anomalies in the formulation”, and that combining
the treatment of weak ground with a treatment of strict ground turns out to
provide a more natural starting point for the logic of ground [Fine, 2012a, p.
1]. This leaves open the hope of offering a formulation of the logic of ground
that relies only on the notion of strict ground. In this paper, I show how this
hope may be fulfilled, outlining a way of treating the logic of strict ground in
isolation, and interpreting weak grounding claims in terms of strict grounding
claims so that the axioms and inference rules of PLG are verified. I describe a
fragment of PLG, which I call the logic of strict ground (LSG) and a translation
scheme for representing the grounding claims in the language of PLG in the
language of LSG; I show that the scheme verifies all of the principles of PLG
on the proposed interpretation; and I show that the derivability of a grounding
claim from a set of premises in PLG can be exactly characterized in terms of
the derivability of its interpretations in LSG. I conclude that PLG is reducible
to LSG.

This is good news for theorists of ground. LSG is simpler than PLG in at
least two ways. First, its language only contains two grounding operators, one
for full strict ground and the other for partial strict ground. So, it relies on fewer
primitives. Second, it relies on fewer inference rules, and each of the rules of
LSG is also valid in PLG. Thus, the formulation of the logic of ground afforded



by LSG is at least as elegant as the formulation in PLG. What’s more, because
LSG contains only expressions for strict ground, it does not rely on a primitive
notion of weak ground. If, as I will argue, the notion of weak ground stands
in need of clarification, then LSG will be clearer on this score than PLG. The
results derived here, however, show that there is a notion that is analyzable in
terms of strict ground, and which satisfies the inference rules of PLG. So, we can
introduce a notion of weak ground, in effect defined in terms of strict ground,
and show that the notion, so-defined, yields the pure logic of ground. If this
notion captures everything of importance in the notion of weak ground deployed
by Fine, then we will have thereby provided a clarification of that notion. So,
the results we will prove show that LSG is simpler than and at least as clear
and plausible as PLG.

2 What is Weak Ground?

Fine offers two intuitive characterizations of weak ground. Fine’s semantics
suggests another characterization. A remark suggests yet another. There is
reason to think that none of these four characterizations provides an adequate
explanation of the notion of weak ground.?

Fine first suggests that, while a strict ground for ¢ is a fact occuring lower
than ¢ in the explanatory hierarchy, a weak ground for ¢ is a fact occurring
at the same level as ¢ in the explanatory hierarchy. Theorists of ground have
defended the idea that grounding makes available a creditable explication of the
idea of an explanatory hierarchy organized into levels.* But it is not clear that
being at the same level as ¢ in an explanatory hierarchy of this sort corresponds
to any useful notion of ground. Suppose it’s chilly, but neither windy nor sunny.
Then, it is either chilly or windy in virtue of the fact that it is chilly; similarly,
it is either chilly or sunny in virtue of the fact that it is chilly. Its being either

3My review of the first three characterizations pushes them farther than I believe Fine
intends. On my reading, Fine does not intend any of these three characterizations as a full
explication of the notion of weak ground, so much as an interesting further fact concerning
the relation picked out by the notion that may help us understand the idea. The fourth
characterization is intended to be a definition of weak ground in terms of strict ground.
Nevertheless, the question of whether any of these characterizations can be used to specify
the notion is worth exploring. The arguments that follow, if sound, provide reasons not only for
rejecting the full explications of the notion of weak ground suggested by the characterizations,
but also for finding the characterizations less helpful for understanding weak ground than one
might have hoped.

4See, e.g., [deRosset, 2013], [Schaffer, 2007, 2010]



chilly or windy occurs at the same level in the explanatory hierarchy as its being
either chilly or sunny. But, one may reasonably feel, there is no explanatory
relation between them that one would want to classify as a kind of ground, akin
to the in virtue of relation.

Fine’s second intuitive characterization of the notion of weak ground is in
terms of the English idiom “For ..., for ...”. He writes, “[t]hus for John to marry
Mary is for John to marry Mary, for John to marry Mary is for Mary to marry
John, and for John to marry Mary is for John to marry Mary and (for) Mary
to marry John. In each of these cases, we may say that the truth or truths
on the right weakly ground the truth on the left.” [Fine, 2012a, p. 3] This
characterization is unsatisfactory, given that strict grounds are also supposed
to be weak grounds. To my mind, it would be clearly false to say that for it to
be either chilly or windy is for it to be chilly, in part because the former fact
may obtain when the latter does not.

A quick glance at the semantics Fine offers for PLG gives us a third charac-
terization of weak ground. His semantics relies on an ontology of facts, which
are to be thought of as “...parts of the actual world” [Fine, 2012a, p. 7, emphasis
original]. The sentences of the language are all truths, and each such sentence
is to be associated with a verification set — the set of facts that make it true (or

“truthmakers,” as such things are called in the literature).’

On the conception
of weak ground sugggested by Fine’s semantics, the full weak grounding claim
¢ < 1) is true just in case every member of ¢’s verification set is also a member
of ’s, i.e., every truthmaker for ¢ is also a truthmaker for 1.5 Suppose again
that it is chilly but not sunny. According to Fine’s semantics, its being chilly
is a weak ground for its being either chilly or sunny just in case every truth-
maker for ‘it’s chilly’ is also a truthmaker for ‘it’s either chilly or sunny.” So far,
so good. A problem arises, however, if we allow that the truthmakers may be
sparse in such a way that the only parts of the actual world which are truth-
makers for a true disjunction with a false disjunct are the truthmakers for its

true disjunct. Such a view is intuitively attractive, and many in the truthmaker

5There are truthmaker theorists who deny that truthmakers are facts; see [Mulligan et al.,
1984] for a classic example. The argument of this paragraph could easily be amended to
accommodate alternative views concerning the nature of truthmakers.

6This is a special case of the more general truth condition given on [Fine, 2012a, p. 9],
in which the left-hand side of the weak grounding claim is a single sentence ¢; Fine’s truth
condition is stated in terms of sequents with an arbitrary set of sentences ¢o, ¢1,... on the
left-hand side.



literature endorse it. But, if the truthmakers are sparse, then Fine’s semantics
will imply that its being either chilly or sunny is a weak ground for its being
chilly. As above, one may reasonably feel that there is no explanatory relation
going from the disjunction to its disjunct that one would want to classify as a
kind of ground, akin to the in virtue of relation. In fact, it seems very clear
that the explanatory relation between the true disjunct and the disjunction is

7 It would appear, then, that the adequacy of this particular ex-

asymmetric.
planation of weak ground rules out a view of truthmakers that ought not to be
ruled out.®

Fine makes one more claim concerning weak ground, that one might hope
would helpfully specify the notion. Fine writes, “[ijn general, whenever a number
of truths [fully] weakly ground a given truth, whatever explanatory role can be
played by the given truth can also be played by their grounds” (p. 3).° This
claim describes the explanatory role the weak grounds for a fact may play. Fine
suggests that we may use this specification of the explanatory role that full weak
grounds play to define the notion of weak ground [Fine, 2012b, p. 52].

The idea is that some facts weakly ground ¢ if and only if they strictly
ground (perhaps in concert with some further facts T') all of the facts strictly

grounded (perhaps in concert with ') by ¢.1®  Assuming (as PLG requires) that

7This objection presupposes that the facts available to serve as truthmakers are restricted
to those that actually obtain. Although Fine endorses the presupposition [Fine, 2012a, p. 7],
nothing in the formal apparatus of his semantics requires it. We might hope, then, to avoid
the problem by “going possibilist,” i.e., appealing to facts that either actually obtain or might
have. Because it might have been sunny today, there is a possible fact which may serve as
an additional truthmaker for ‘it’s either chilly or sunny.” We will run into similar problems,
however, handling cases of true disjunctions with impossible disjuncts, like ‘either it is chilly or
0=1." It would seem, then, that Fine’s semantics will ultimately avoid the problem only if we
allow ourselves to “go impossibilist” by postulating impossible facts to serve as truthmakers
for true disjunctions. Fine has, in another context, given a truthmaker semantics that appeals
to an infinite number of impossible facts, or, as he calls them, “contradictory states” [Fine,
2014, §4]. Thanks to an anonymous referee.

8In personal correspondence, Fine confirms that the semantics for PLG presupposes a
plenitudinous ontology of facts, on which there is a one-one relation between true sentences
and the facts they report.

91 have interpolated “fully” into this characterization in order to deal with certain unin-
teresting counterexamples to the unamended claim. Suppose, for instance, that P merely
partially weakly grounds Q. @ fully strictly grounds (Q V R), but we wouldn’t expect it
to follow that P by itself fully strictly grounds (Q V R); given that P, @, and (Q V R) are
sentences, in PLG {P X Q,Q < (QV R)} does not imply P < (Q V R). My interpolation does
no damage to the utility of the characterization since, if we had an adequate characterization
of full weak ground, we could explain the notion of partial weak ground in its terms in the
way suggested at the beginning of this paper: a partial weak ground of ¢ is some fact that is
a (perhaps improper) part of a full weak ground for ¢ .

10Formally, the definition can be captured in model-theoretic terms. Let f and g be verifi-
cation sets and F' and G be sets of verification sets of a model M. Then the statement of the



grounding is transitive, every strict ground of ¢ satisfies this characterization.
But there is at least one fact that also satisfies this characterization and which
isn’t a strict ground of ¢: ¢ itself. So, this specification satisfies the claims
concerning weak ground that Fine takes as axiomatic.

Problems arise, however, when we confront situations in which the universal
generalization used to define the notion of weak ground is vacuously satisfied.
Suppose, for instance, that there are only two “atomic” facts @ and b, and just
one “conjunctive” fact a.b. The conjunctive fact a.b does not strictly ground
any facts, since, on pain of circularity, it strictly grounds neither itself nor its
conjuncts, and these exhaust the facts. Thus, according to the definition, a
is a (full) weak ground of a.b. But, one may reasonably feel, there is no full
explanation of the conjunction that appeals to only one conjunct and that one
would want to classify as a kind of ground, akin to the in virtue of relation.

It is worth noting in this connection that Fine’s semantics appears to be
at odds with the proposed definition of weak ground in this case. On that
semantics, there is a model in which, roughly, there are only the three facts a,
b, and a.b.'! On Fine’s semantics, it is not true in this model that a is a full
weak ground of a.b, even though everything strictly grounded by a.b — namely,
nothing — is also strictly grounded by a. I've argued that the semantics is correct
on this point. If I'm wrong about that, though, the problem of the mismatch
between the proposed definition and its semantic implementation remains.

The problem cannot be fixed by requiring non-vacuous satisfaction of the
explanatory role played by a.b, since then a.b would no longer weakly ground
itself. There are a variety of more complicated maneuvers that might avoid
the problem. For instance, we could stipulate as a background condition on
the definition that chains of strict grounds have no “top”, so that every fact

strictly grounds some further fact. (However, this would have the effect of

definition will be:

G<mfif (f,F<mg=G,F<nmg).
See [Fine, 2012a, p. 9] for a specification of the relation between the notions expressed by
<m and <, and the object-language grounding symbols < and <.

HLess roughly, there is a fact frame in which the universe of facts is {n,a,b,a.b}, and the
fusion operation II is such that II(0) = n, I[I({a,b}) = a.b, I({z}) = =, I({n} UT) = II(T"),
and II({a.b} UT) = a.b. (Fine’s semantics requires the existence of a “null fact,” and the
element n is playing that role here.) Suppose our language has only two sentences ¢ and 1,
respectively. Then a model M for that language relative to our fact frame is given by letting
the interpetation [¢] of ¢ be {a} and the interpretation [¢] of ¢ be {a.b}. In this model M,
[¢] Za1 ], and so M ¥ ¢ < .



ruling out the hypothesis that there are only finitely many facts.)'? I won’t
pause to chase down the myriad ways in which one might respond to the problem
for the proposed definition of weak ground. The important point for present
purposes is that a response is needed. As it stands, Fine’s proposed definition of
weak ground encounters problems, and does not appear to match its semantic
implementation.

I have offered only a very short review of some initial difficulties with each of
the four characterizations of weak ground. None of these difficulties are decisive.
What’s more, there are various other proposals for defining weak ground in
terms of strict ground which I have not discussed here. Indeed, in what follows
I propose, in effect, one such definition. The point for present purposes is that
our attempts to characterize weak ground have led us into difficulties. We can
avoid these difficulties altogether if we can provide a formulation of the logic of
strict ground which does not rely on the notion of weak ground. This is what I

propose to do next. I start by laying out the two systems we will be studying.

3 The Pure Logic of Ground (PLG)

We turn first to a review of Fine’s pure logic of ground (PLG). A language L of
PLG is a tuple (S, <, <, <, <), such that S is non-empty set, and <, <, <, and <
are symbols indicating the four kinds of ground introduced in §1. The members
of S are the sentences of L. Intuitively, we may think of the sentences in S
as expressions that state facts. PLG is a sequent calculus, in which these sen-
tences are combined with the grounding symbols to construct more complicated
syntactic objects, called sequents. In PLG these sequents represent grounding
relations among facts. To ensure that sequents of £ have a unique parsing, we
stipulate that the grounding symbols are pairwise distinct and not in S. Fine

defines the sequents of L as follows:

Definition For all A C S and ¢, € S, the following are exactly the sequents
of L:

A<g A<¢o Yv=<9¢ P=¢
Much of our discussion will turn on the structure of sets on the left-hand sides

of sequents whose operator is either < (full weak grounding) or < (full strict

12The claim that chains of strict grounds have no “top” is more plausible if we “go possi-
bilist” in the sense of n.7.



grounding). Following Fine (and one tradition in the presentation of sequent
calculi), in a specification of the form of such a sequent, a comma on the left
indicates set-theoretic union, and a sentence variable on the left indicates the
relevant sentence’s singleton. For instance, if A and I" are sets of sentences, and

¢ and ) are sentences, then

AT<¢y o<tp  Ap<y

indicate the sequents

AUT<y {e}<y AU{g}<v

respectively.

9

The inference rules of PLG are given in figure 1. The ‘1’ in the statement
of non-circularity is not a distinguished sequent standing for falsity, but rather
indicates that any sequent whatsoever is derivable from a sequent of the form
¢ < ¢.*2 A derivation in PLG of a sequent o from a set of sequents S is a

converse well-founded tree!*

whose root is o, whose leaves are either members
of S or instances of IDENTITY, and whose nodes follow from their predecessors
by one of the inference rules of PLG. I will write S - o to mean that there is a

derivation in PLG of ¢ from S.

4 The Logic of Strict Ground (LSG)

Given a language L of the pure logic of ground, a corresponding language L°
for the logic of strict ground can be obtained. The set of sequents of L? is the
set of sequents of £ whose symbol for grounding is < or <.

The inference rules for LSG are given in figure 2. All of the inference rules
of LSG are derivable in PLG. The notion of a derivation in LSG is defined
similarly to the notion of a derivation in PLG, except that nodes in a derivation
follow by the axioms of LSG, rather than PLG. I will write S F° ¢ to mean that

there is a derivation in LSG of ¢ from S.

13Here and throughout I indulge in sloppiness about distinguishing use and mention. Adding
quotation marks and corner quotes in every relevant place would complicate the presentation
without aiding understanding.

14 A converse well-founded tree is a tree for which the converse of the “child of” relation on
the tree’s nodes is well-founded. That is, there are no infinite chains starting at the root and
extending up along any branch. Thus, every branch terminates in finitely many steps.

10



SUBSUMPTION (</<): A< (</=): <
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¢ =< ¢ =
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¢ <06
IDENTITY 5<
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Ag,A1,...< ¢
REVERSE SUBSUMPTION $0,b1,...,<d  do<d b1 <o
¢0,P1,-..< ¢

Figure 1: The pure logic of ground

For the remainder of this paper, I will assume we are given a language L,
and I will suppress reference to £, and just talk about sentences and sequents.

It is obvious that derivations that do not use NON-CIRCULARITY in ei-
ther PLG or LSG preserve syntactic information in ways that derivations that
use NON-CIRCULARITY may not. For instance it is straightforward to show
that any sentence occurring in any sequent o derivable from S without NON-
CIRCULARITY (in either PLG or LSG) also occurs in some sequent in S, so
long as o is not a weak identity (i.e., not of the form ¢ < ¢ or ¢ < ¢). Thus,
many of the results below concern derivations that contain no application of
NON-CIRCULARITY. I will call such derivations (either in PLG or LSG) nor-
mal derivations; I will use ‘-7’ to indicate the existence of a normal derivation

in PLG; and ‘+°~ to indicate the existence of a normal derivation in LSG. I will

11



SUBSUMPTION Ap<p

¢ =<
TRANSITIVITY b<tp <0
» <0
NON-CIRCULARITY <o
1
CUT Ap < ¢o A <1 L ¢0,01,-..<¢

I, Ag,Ag,...<¢

AMALGAMATION Ao<¢p A1<¢
Ao, A1, <@

Figure 2: The logic of strict ground

follow Fine in calling a set of sequents S consistent (in either PLG or LSG) if no
sequent of the form ¢ < ¢ is derivable from S. Fine shows that S is inconsistent
in PLG iff there is a normal derivation of a sequent of the form ¢ < ¢ from
S [Fine, 2012a, p. 11, Lemma 4.2]. Though Fine does not explicitly consider
LSG, his proof extends straightforwardly to that system.!'®

5 Adequacy of LSG for the Pure Logic of Ground

Fine offers a semantics for PLG, and shows that PLG is sound and complete for
that semantics. We can use Fine’s construction and results to offer a semantics
for LSG and prove corresponding soundness and completeness results. The task
is made easy by the fact that all of the rules of LSG are also rules of PLG, and
that all sequents of LSG are also sequents of PLG. Fine defines the notions of
a generalized fact model of PLG and a fact model of PLG [Fine, 2012a, p. 8].

I will say that M is a model of PLG just in case it is either a generalized fact

15This result implies that normal derivability may play a special role in our account of
derivability in PLG. For it implies that derivability in PLG is reducible to normal derivability
in PLG: a sequent is derivable from S iff either it is normally derivable from S or there is a
sequent of the form ¢ < ¢ that is normally derivable from S.

12



model or a fact model of PLG. Fine defines the notion of a sequent o of PLG’s
being true in a model M (M Eprg o). The notion of 0’s being a consequence of
S (S Eprg o) is then defined in the standard way as truth-preservation in every
model. Given these notions, it is easy to define correlative semantic notions for

LSG:

o M is a model of LSG iff M is a model of PLG.

A sequent o of LSG is true in a model M (M E° o) iff M Eprg o

a set S of sequents is true in a model M (M E* §) iff (Vo € S)M E® o;

and

e a sequent o is a consequence of a set of sequents S (S E® o) iff for all
models M, if M E° S then M F° ¢.

This gives us a semantics for LSG. It is then straightforward to prove
Theorem C.1 (Soundness) If SF° o, then SF° o
and
Theorem C.4 (Completeness) If S F* o, then SFH° 0.

Because LSG is sound and complete for Fine’s semantics, LSG suffices to
exactly characterize those logical relations of consequence among strict ground-
ing claims captured by PLG. The salutary upshot is that neither the language
nor the axiomatization of the logic of strict ground need appeal to Fine’s no-
tion of weak ground. Moreover, the proof of theorem C.4 proceeds in effect by
showing that PLG is a conservative extension of LSG.'® Given the consistency
of LSG, this guarantees that there is some interpretation of weak grounding
claims that validates the axioms of PLG. So, if we want to continue to use PLG
and the notion of weak ground its axioms characterize, we may do so in good
conscience.'”

It would be nice, however, to be able to helpfully specify an interpretation
of weak grounding claims that validates the axioms. Fine’s remarks suggested
four interpretations, but each of those interpretations faces problems. I now
turn to the task of providing a helpful interpretation of weak grounding claims

that avoids the problems.

16Thanks to an anonymous referee for highlighting the need to emphasize this point.
17See [Fine, 2012b, pp. 63ff.] for a proposed application.
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6 An Interpretation of Weak Ground

I aim to offer a translation scheme for weak sequents in PLG into sequents in
LSG, so that (i) the inference rules of PLG are validated, in the sense that,
if a sequent is derivable from some premises in PLG, then a translation of
that sequent is derivable from a translation of those premises in LSG; and (i)
the derivability of a sequent in PLG can be exactly characterized in terms
of the derivability in LSG of its translation. We will interpret weak identity
sequents as asserting the self-identity of ¢; since such claims are trivial, we
will ignore weak identities in our formal translation scheme. Here’s the rough
idea of the translation scheme for other sequents of PLG: we translate strict
sequents homophonically; we translate a partial weak sequent ¢ =< i by the
corresponding partial strict sequent ¢ < ; we translate a full weak sequent
A <1 as the corresponding full strict sequent A < if A does not contain ),
and as the claim that all of the members of A other than v are jointly part of
a strict full ground for ¢ otherwise.

The case of a full weak sequent of the form A ¢ < (A # 0,1 ¢ A) is
obviously the most complicated and bears comment. Let’s take as our example
a sequent ¢, x,v < 1 (where ¢, x, and ¢ are all distinct from one another).
Our translation takes this sequent to express the claim that ¢ and x are jointly
part of a strict full ground of ¥. That is, there is some other, unspecified fact
that, together with ¢ and yx, fully strictly ground . This translation is more
complicated than might seem necessary. Why not take the ordinary arithmetical
meaning of ‘<’ as our guide, and interpret a weak full grounding claim as saying
that the facts on the left-hand side other than v strictly ground ¢? In the case
at hand, the proposal would be that ¢, x, 1 <1 expresses the claim that ¢ and
x by themselves fully ground .

This translation scheme is simpler, but it’s wrong. Suppose, for instance,
that it is chilly, windy, and sunny, and consider the claim that its being chilly,
windy, and sunny is weakly grounded in the triple of facts: it is chilly; it is
windy; it is chilly, windy, and sunny.'® It is clear that we should not interpret
this claim as the claim that its being chilly, windy, and sunny is strictly and

fully grounded in the pair of facts: it’s chilly, it’s windy. The problem isn’t the

181s this claim true? Well, for the reasons stated in §2, I am unsure whether this claim fits
the notion of weak ground that Fine has in mind. According to the translation scheme I offer
in this paper, it will turn out to be true.
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implausibility of the translation, for we’ve got no reason as yet to think that
the original weak grounding claim is plausible. The problem, rather, is that
this translation does not adequately capture the logic (in PLG) of the original
weak grounding claim. On the simple translation scheme on offer, ¢, x, ¥ <t and
¢, x <1 would get the same interpretation; thus, according to this interpretation,
the latter should be trivially derivable from the former. But, in PLG ¢, x, ¥ <
does not imply ¢, x <. We are left with a mystery concerning why PLG does
not sanction the interderivability of these two claims, given that that they are
synonymous according to the interpretation. In PLG, the removal of ¢ from
the left-hand side of the sequent might leave a “hole” that needs to be filled

by some other sentence.!?

For this very reason, I doubt that there is a way
to exhaustively characterize derivability in PLG in terms of derivability in LSG
using this simple translation scheme. To vindicate the hope of reducing PLG to
LSG, we need a more sophisticated translation, like the one I have suggested.
But how are we to carry out the idea that ¢, x, 1 < 1 expresses the claim that
¢ and x are jointly part of a strict full ground of ?

The simplest expedient is to import, for each sentence v, a fresh sentence
by, that represents a fact that “plugs any holes” that might be created when
is removed from the left-hand side of sequents of the form A, <. Thus, we’ll
use by to interpret ¢, x, ¥ < as ¢, x, by <. We'll call these “hole-pluggers”
witnessing constants.2°

We will use witnessing constants to carry out the rough idea sketched above.
First, let’s define a notion that relates sets containing witnessing constants to
those that don’t.

19Here, perhaps, an analogy with mereological fusion may help. It is obvious that there
will be cases in which an individual is a mereological fusion of itself and some other individ-
uals, but the individual is not the mereological fusion of the other individuals. For instance,
Michelangelo’s David is the mereological fusion of David, David’s head, and David’s left leg;
but David is not the mereological fusion of David’s head, and David’s left leg. Removing
Dawvid from the list of fusees leaves a “hole” that needs to be filled by something else.

20T his is the simplest expedient, but it is not the most natural. We are, in effect, assuming
that a single “hole-plugging” fact will plug the holes left by the removal of ¢ from the right-
hand sides of both ¢, p<¢ and x, $<¢. There is no reason to believe that there is such a single,
all-purpose “hole-plugger” for ¢. A more natural course would be to introduce a witnessing
constant for each weak sequent in S of the form A, ¢ < ¢; thus we would have different “hole-
plugging” witnessing constants for 1,¢ < ¢ and x,¢ < ¢ if b # x. It is obvious, however,
that the results we show below for our simpler translation scheme could also be shown, with
a little added complication, for the more complicated but more natural translation scheme.
Since the construction is already complicated enough, I am adopting the simpler expedient.
The technique of witnessing constants is used in Fine’s completeness proof for PLG [Fine,
2012a, pp. 14-6, 17-9].
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Definition A set Ba is a b-version of a set A iff A is the result of uniform

replacement of every witnessing constant b, € Ba by its corresponding sentence

o.

Now, let’s use this notion to define the notion of a translation of a sequent o.
Suppose that o is not a weak identity, ¢ ¢ A, and Ba is a b-version of A. Let
A+ ¢ (£by) be A if the antecedent of o does not contain ¢, and A, ¢ (A, by)

otherwise.

Definition A sequent 7 is a translation of o iff:
cisALt o< and 7 is Ba £+ ¢ < ¢;
cisAt¢p<¢ and 7 is BA by < ¢; or
cisporop<9 and 7 is ¢ < 1.

We can now specify a way of translating an arbitrary set of premises S.
Since we are ignoring weak identities, the first thing to do is to purge them
from S. Let S* be the result of removing all weak identities from S. For the
purposes of translation, we must ensure that the witnessing constants can play
the “hole-plugging” role we intend them to play. In particular, since by is an
all-purpose hole-plugger for weak grounds of v, we’ll add that by, itself is a full
weak ground of 1, i.e., by, <. Further, we may assume that any full ground
that does not include 9 is a full ground of by; the idea here is that, if A <
or A < (where ¢ ¢ A), then A is itself an all-purpose “hole-plugger”. To
illustrate, consider the following application of CUT in PLG:

p<¢p x<x ALY ¢, x,v<Y
¢, x, A<

Notice that, if ¢ ¢ A, the validity of this application of CUT shows that A can
“plug any holes” left by the removal of ¥ from the left-hand side of the major

premise. Because such A’s may serve as a hole-pluggers, we will assume that
each of them is either identical to or fully grounds b,. Thus, for all sequents in
S which have the form A <1 or A < we’ll add a sequent of the form A<b,. A
first step in giving an adequate interpretation of weak grounding claims, then,
is importing the witnessing constants and adding the claims that ensure that

those constants can play their intended “hole-plugging” role:

Definition The b-expansion of a set of sequents S is the set containing exactly

the following:
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1. every member of S
2. by < ¢, for all sentences ¢ occurring in any sequent in .S; and
3. A <by, for all sequents A<por A<oin S (¢ ¢ A).

Finally, we choose particular translations for sequents ¢ in a given set of

premises S.

Definition The translation function T is the function from sequents in the

language of PLG to sequents in the language of LSG such that:
T(A<¢) = A<o

T(¢ < 1) = ¢ =<1
T (¢ =X 1) = 9=y
T(A<¢) = A<¢ (¢ ¢ A); and

T(A¢<¢) = Aby<¢ (p¢A4A)
Putting all of this together, the translation of a set of premises S (T(S))

will be the result of applications of T to the members of the b-expansion of S*:

T(S) = {T(0)|o is a member of the b-expansion of S*}

7 Identification Schemes

This translation scheme won’t quite allow us to characterize derivability in PLG
in terms of derivability in LSG. There are sets of sequents such that the transla-
tion of those sets has consequences normally derivable in LSG that the set does
not have in PLG. For instance, when ¢ # 1,

T{o<,v <o) F ¢ <9

but
{0, <o} F o< 0.

There is, however, an obvious interpretation in accord with the spirit of the
present proposal that secures the consistency of ¢ <) with 1) <¢: both sequents
will be true when ¢ and v express the same fact. The above translation scheme
goes wrong, in effect, by assuming that distinct sentences express distinct facts.

This problem is easily remedied.
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Definition An identification scheme is a function f from the set of sentences
into the set of sentences such that f(f(¢)) = f(¢).%*

Clearly, if f is an identification scheme, the relation ¢ and @ stand in just in
case f(¢) = f(v) is an equivalence relation. Thus, an identification scheme
partitions the set of sentences and chooses a representative for each partition.
If A is a set of sentences, then I will often write ‘f(A)’ to indicate the image of
A under f, and similar remarks apply to sequents and sets of sequents.

An identification scheme represents an hypothesis about which sentences
state the same facts. How we should translate a weak sequent depends on the
identities of the underlying facts. For instance, the proper translation of, e.g.,
¢ <1 depends on whether ¢ and 1 report the same fact: if they do, then it
is a weak identity and we ignore it; if they don’t, then we translate it as a
strict grounding claim. Call a translation of the result of the application of an
identification scheme f to a sequent or a set of sequents a translation under
f of the sequent or set. We know how to translate each sequent under each
identification scheme. But we’ve got no information about which identification
schemes get the identities of the facts right. How are we supposed to know how
to translate the sequent?

We don’t have to know how. The logic of ground is blind to which identifica-
tion scheme is correct. Given an identification scheme, our translation together
with LSG tells us what follows from ¢ <. So, we may take what follows from
that weak sequent independently of any identification scheme to be what fol-
lows from some translation of that sequent under every identification scheme.
Compare this to the case of disjunction. Suppose we're given as a premise the
disjunction “it is either chilly or windy”. The truth of the premise gives us no
information about which disjunct is true. But this is no bar to determining
what follows from the disjunction: the logical consequences of the disjunction
are those claims that are logical consequences of both disjuncts. Similarly, the
logical consequences of ¢ < v are those claims that follow from it no matter
which facts are which. Since this sequent contains only two sentences, there are
only two hypotheses about which facts are which that are relevant to its inter-
pretation: either ¢ and v express the same fact, or they express distinct facts.
In the former case, we interpret ¢ < as the claim that ¢ is identical to ¢ (i.e.

¥). In the latter case, we interpret ¢ < as the claim that ¢ strictly grounds

21Thanks to an anonymous referee for suggesting a significant refinement here.
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1. Thus, our proposal in effect interprets ¢ < as a disjunction: “either ¢ = 1)
or ¢ strictly grounds 1.” The logical consequences of this disjunction, as with
every disjunction, are the logical consequences of both disjuncts. Since sequents
may contain infinitely many sentences, we can’t use (finitary) disjunctions to
translate all of the sequents in the language of PLG. But we will show, roughly,
that what follows from a set of sequents S in PLG is given by what follows in

LSG from a translation of S under every identification scheme.

8 Reducibility of - to F*

We started with two main desiderata on an interpretation of weak ground: (1)
it should verify the principles of PLG; and (%) it should allow us to reduce
derivability in PLG to derivability in LSG. Our three main formal results show
that these desiderata are satisfied. The first result shows that the interpretation

verifies the inference rules of PLG:

Theorem F.1 If S+ o, then for all identification schemes f, f(o) either is a
weak identity or has a translation T such that T(f(S)) F* 7.

In short, derivability in PLG is preserved under our translation scheme.

Two further formal results show that we can reduce derivability in PLG to
derivability in LSG. The reduction proceeds in two steps. First, we show that
an arbitrary sequent o is derivable in PLG from a set of sequents S just in case
either S is inconsistent (in PLG) or a translation of ¢ is normally derivable in
LSG from a translation of S.

Theorem F.8 S+ o iff either S is inconsistent in PLG, or, for all identifica-
tion schemes f, if f(o) is not a weak identity, then it has a translation T such
that T(f(S)) k5~ 7.

This shows that derivability in PLG is reducible to derivability in LSG and
consistency in PLG. We complete the reduction by showing that the consistency
of S in PLG is reducible to derivability in LSG:

Theorem F.9 S is inconsistent in PLG iff there is a sequent ¢ < ¢ such that
for all identification schemes f, T(f(S))F*~ f(¢) < f(9).

Thus, the pure logic of ground is reducible via our translation scheme to the

logic of strict ground.
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9 The Limits of the Reduction

This last theorem does not quite guarantee that when S is consistent there
is an identification scheme on which the translation of S is also consistent.
That would require there to be a single identification scheme f such that the
translation of S under f is consistent. However, it is easy to give a simple
general recipe for constructing such an identification scheme given a consistent
set of sequents (see theorem F.10 below). Thus, if S is consistent (in PLG),
then it has an interpretation in LSG that is consistent. In fact, S is consistent
if and only if it has a consistent interpretation on some identification scheme.
In proving the reducibility of derivability in PLG to derivability in LSG, we

show a subsidiary result concerning the logic of weak grounding claims:

Theorem F.3 (<-Sufficiency) Suppose o is not a weak identity, but has the
form 2 < ¢, and let T be a translation of o. If T(S)F°~ 7, then S+~ o.

This result in effect shows that there is a particular identification scheme f —
viz., the trivial scheme on which f(¢) = ¢ for all sentences ¢ — such that normal
derivability of a translation of any full weak grounding claim from the translation
of f(S) guarantees normal derivability of that claim from S.??2 It would be nice
if we could show something similar for strict sequents. Unfortunately, we can’t.
There is not generally any such identification scheme. Consider, for instance,

the set of sequents

{¢o <, o1 <Y, $o < X}

Every identification scheme yields a translation of this set which implies in LSG
some strict sequent not implied in PLG by the set itself. If we are to avoid
implying ¢g < ¥, then we must identify ¢y and . If we are to avoid implying
¢1 < 9, then we must identify ¢; and . Finally, if we are to avoid implying
¢1 < x, then we must avoid identifying ¢¢ and ¢;. There is no identification
scheme which can meet these constraints. This is exactly what we should expect
on the interpretive proposal I have been exploring. According to the intuitive
idea guiding our interpretation of weak grounding claims, ¢g < ¥ expresses in
effect the disjunction, “either ¢g is ¥ or ¢ (strictly) grounds ;" similarly,
@1 < ¢ expresses the disjunction, “either ¢; is ¢ or ¢; (strictly) grounds v.”

22Theorem F.4 shows a similar result for partial weak grounding claims.
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The conjunction of these two claims with the claim that ¢ grounds y requires

that at least one of
¢o < o1 <Y P1 <X

be true, but does not require that any particular one of them be true.
In fact, there are consistent sets of sequents in PLG whose consistent inter-
pretations in LSG have consequences that the original sets do not have. Con-

sider, for instance, the set of sequents

{o<v,  v=x, X < ¥}

We get a consistent translation only if our identification scheme f identifies
and y. Otherwise, the last two sequents would be translated f(¢) < f(x) and
f(x) < f(4), respectively, and so the translation would be inconsistent. The
translation under f of ¢ <1 would therefore be identical to the translation under
f of ¢<x. Thus, given the hypothesis about which sentences state the same facts
required to make our interpretation of this set consistent, our interpretation of
the set has a logical consequence that the set itself does not have. Supposing
that that hypothesis fails, our interpretation of the set is inconsistent and so
still has this consequence (via NON-CIRCULARITY). Thus, our interpretation
of the set in question has a consequence that the set itself does not have.??

In this sense, our interpretation of sequents in PLG is not conservative. That

is, the biconditional
St o iff (VA)T(f(S))F® some translation of f(o)

fails in the right-to-left direction for some sequents o expressing strict grounding
claims. Our interpretation does, however, enjoy a qualified form of conservativ-

ity for consistent sets of sequents in PLG:2*

Theorem F.7 if S is consistent in PLG, then S & o iff for all identifica-
tion schemes f, f(o) either is a weak identity or has a translation T such that

T(f(S)) F*~ 7.

23Fine reports (personal correspondence) that in his view this inference is not valid. Pre-
sumably, then, he has in mind a notion of weak ground for which the interpretation I have
offered is wrong. For the reasons stated in §2, it is not clear to me what that notion is.

24Conservativity holds for inconsistent sets. By theorem F.9, a set that is inconsistent
in PLG gets an inconsistent translation under every identification scheme. It is a trivial
consequence of this that the biconditional

St o iff (Vf)T(f(S))+° some translation of f(o)

holds if S is inconsistent.
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Is the failure of the interpretation I have proposed to be conservative a reason
to reject it? Certainly, there are limits on how far violations of conservativity
may go. I argued in section 6, for instance, that an interpretation of ¢, ¥, x < x
on which it expresses the same grounding claim as ¢, 1) <y goes too far because
that interpretation identifies the two claims even though PLG does not sanction
the derivability of the second from the first. This interpretation leaves us with
an intolerable mystery: why does PLG not sanction the interderivability of these
two claims, if they are synonymous, as the interpretation requires? This failure
of conservativity goes too far.

Still, unqualified conservativity is not required in order for us to show that
our interpretation of weak ground is adequate. After all, our interpretation uses
logical resources, embedded in the apparatus of identification schemes, which
are not independently representable in the language of PLG. PLG does not
allow us to directly represent the fact that ¢ and v are distinct, for instance,
without also representing a grounding relation between them. We should expect
a richer representation of the relations among facts to yield consequences beyond
those sanctioned by PLG. By way of analogy, recall that when we add identity
to predicate logic, our ability to represent the facts is enriched. Thus, our
logical representations of “Hesperus is shining” and “Hesperus = Phosphorus”
get richer, in such a way that the representations of this pair of sentences in
predicate logic with identity have a logical consequence in the original language
— “Phosphorus is shining” — that their representations in predicate logic without
identity do not have. Thus, we have an answer to the question of why PLG does

not sanction the derivability of ¢ < x from

o<y,  ¥v=xx, X XY}

PLG does not sanction this derivability because it does not have the logical
resources to draw from the conjunction of ¥ < x and y =< @ the consequence
that ¢» = x, and it does not have the logical resources to use that identity
to substitute an occurrence of x in for the occurrence of ¥ in ¢ < . Our
interpretation, on the other hand, uses a resource of this sort: the notion of an
identification scheme.

There is a related further limitation of our proposed reduction of PLG to
LSG. The application of our translation scheme to a weak sequent in PL.G does

not yield a definition in the language of LSG of that sequent. As I have empha-
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sized, the interpretation of weak grounding claims I have offered is disjunctive:
¢ < 1 is, in effect, interpreted as the disjunctive claim that ¢ either strictly
grounds ¥ or is identical to it. Also, the interpretation of full weak grounding
claims involves existential quantification: a sequent of the form A, ¢ < ¢ is in
effect interpeted (modulo an identification scheme) as the claim that there are
some facts I' such that A, I strictly grounds ¢. Neither disjunction nor existen-
tial quantification of the relevant sort are expressible in the language of LSG.
Thus, the results of applying our translation scheme to weak sequents are strict
sequents that can represent the weak grounding claims without actually defin-
ing them, in a manner analogous to the way in which Skolem normal forms can
represent existentially quantified claims without actually defining them. As a
result, there are things we can say in the language of PLG that we can’t, strictly
speaking, say in the language of LSG.2°

How should this last limitation affect our assessment of the significance of
the proposed interpretation? I have aimed to interpret weak grounding claims
in terms of strict grounding claims while avoiding the problems encountered
by the interpretations discussed in §2. Recall that Fine proposed to define
weak ground in terms of strict ground. According to the definition, some facts
weakly ground ¢ if and only if they strictly ground (perhaps in concert with
some further facts I') all of the facts strictly grounded (perhaps in concert with
I') by ¢. Let’s take Fine’s proposal as a model. My proposal shares three
features with Fine’s. First, like Fine’s proposal it offers an interpretation of
weak sequents in terms of strict ground. So, given an antecedent grasp of the
notion of strict ground, the interpretation helpfully specifies the meaning of a
given weak sequent. Second, like Fine’s proposal, the interpretation appeals to
expressive resources — including quantification and truth-functions of grounding
claims — that go beyond the language of LSG. Thus, my proposed translation
scheme, like Fine’s, does not map any weak sequents to any particular strict
sequent in the language of LSG. Instead, my proposal maps a given weak sequent
to a family of strict sequents, and the logical features of the weak sequent are
analyzed by appeal to the logical features of that family. Third, like Fine’s
proposal, my proposal is clear enough that we can investigate its consequences

for the logic of weak grounding claims by formal methods. An investigation

25Thanks to Kit Fine for bringing this limitation to my attention, and suggesting the com-
parison to Skolem normal forms.
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of this sort has revealed that my interpretation validates all of the the axioms
governing weak grounding claims, and, more generally, that derivability of a
weak sequent in PLG is reducible to the derivability of its translations in LSG.
So, the interpretation offered takes a step forward in understanding a notion of
weak ground and explaining why that notion satisfies the axioms of PLG.
Still, it would be nice to have a one-for-one translation of weak sequents in
a formally specified extension of the language of LSG. Obviously, the expressive
resources missing from LSG are exactly those aspects of the interpretation that
are implemented using witnessing constants and (quantification over) identifi-
cation schemes: (infinitary) disjunction, fact identity, and quantification over
facts. The specification of a system with those expressive resources and the
demonstration of the adequacy of the proposed translation of weak sequents

into that system must await separate treatment.

10 Weak Ground in the Semantics for LSG

There is one last respect in which the present attempt to expunge any notion
of weak ground from the foundations of the pure logic of ground falls short. As
Fine notes, his semantics give pride of place to the interpretation of weak full
grounding claims, using the truth conditions for weak full grounding that we
discussed in §2 above. The semantics says, in effect, that a full weak grounding
claim of the form ¢ <4 is true in a model iff every truthmaker for ¢ (according
to the model) is also a truthmaker for 1. The truth conditions for full strict
ground are then defined on this basis. A full strict grounding claim of the form
¢ <1 is true in a model iff ¢ (according to the model) is a full weak ground for
1, and there are no facts that, together with 1, compose a full weak ground for
¢. The second clause in this definition is meant to exclude the degenerate case
in which v itself is a full weak ground of ¢: if in a model every truthmaker for
1 is also a truthmaker for ¢, then ¢ < v is not true in the model.

This dependence on weak ground offers a reason for thinking that the seman-
tics here proposed for LSG is inadequate to the notion of (strict) ground whose
logical analysis is at issue. Suppose one last time that it is chilly but not sunny.
According to Fine’s semantics, its being chilly is a strict ground for its being
either chilly or sunny only if there is a truthmaker for ‘it’s either chilly or sunny’

that is not also a truthmaker for ‘it’s chilly.” Suppose again that truthmakers
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are sparse, so that the only parts of the actual world which are truthmakers for
a true disjunction with a false disjunct are the truthmakers for its true disjunct.
Our semantics will then imply the implausible claim that its being chilly is not
a strict ground for its being either chilly or sunny. What’s more, the truth
condition thereby specified by the semantics need not even be construed as an
analysis or reduction of the notion of strict ground. All that’s needed to pose
this problem is that we have specified a necessary and sufficient condition for
the truth of strict grounding claims. If our model theoretic treatment of strict
ground gets the truth conditions for strict grounding claims wrong, then that’s
reason for thinking that the model theoretic treatment is wrong.

It would be nice to have a more adequate semantics for strict ground. That
project must be pursued on another occasion.?®  Still, we shouldn’t lose sight
of what has been shown. I have offered an interpretation of weak grounding
claims that verifies the principles of PLG. We can use the interpretation to
reduce derivability in PLG to derivability of the translation in LSG. Thus, we
have a helpful way of understanding Fine’s formalization of the logic of ground,
including the logic of weak ground, that does not rely on a primitive notion of

weak ground.?”

Appendices

A Preliminaries

For convenience, I will sometimes call the rightmost premise of an instance of
CUT its major premise, and the other premises minor premises. The depth of a
derivation (in LSG or PLG) is defined recursively. Any derivation consisting of
a single node (i.e. of a premise or single instance of identity) has a depth of 1.
Otherwise, the depth of a derivation is the least ordinal greater than the depth
of every immediate subderivation. Notice that infinite depths are allowed, since,

e.g., an instance of CUT in PLG may have infinitely many premises, and there

261 outline and defend a simple proposal in [deRosset, manuscript].

27The idea for this paper arose in correspondence with Jon Erling Litland. Thanks to Jon
for his patience and insight. I also owe great thanks to Mark Moyer for extensive comments
on a very rough early draft. Thanks also to Kit Fine for comments and discussion of a draft
and some of the underlying ideas.
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may be no finite upper bound on the depth of the premises. For instance, any

derivation witnessing

{(ZSOS(ZSI? ¢1 §¢27 ceey ¢17¢27-~-§¢} F ¢0§1/1

will have infinite depth. Many of the proofs that follow deploy an induction on
the depth of derivations.

B Chains

A useful tool for studying the logic of partial grounding claims is the notion of

a chain.

Definition Let S be a set of sequents (either in PLG or in LSG). The notion

of an S-chain is defined by recursion:
1. for each sequent ¢,--- < ¢ in S, (¢, 1) is an S-chain;

2. if (¢, do, b1, - .., X) is an S-chain and {x, xo0, X1, - - -, ¥) is an S-chain, then
<¢a¢07¢1a ~ X5 X05 X1 7,(/)> is an S-Chail’l; and

3. nothing is an S-chain unless it is required to be so by clauses (1) and (2).

Intuitively, an S-chain is a sequence of sentences, where each adjacent pair in
the sequence is such that the first element of the pair is at least a partial weak

ground of the second element according to some claim in .28

Definition Let S be a set of sequents in PLG. The notion of a strict S-chain

is defined by recursion:

1. if (¢, ¢1,...) is an S-chain and ¢y < ¢1 or ¢g, A < ¢ are in S, then
(¢o, P1,...) is a strict S-chain;

2. if (¢, ¢a,...) is a strict S-chain and {(¢g, to, Y1, ..., ¥n, d1) is an S-chain,
then (&0, Yo, V1, ..., Yn, $1, P2, ...) is a strict S-chain;

3. if (b0, o, Y1, ..., 1) is a strict S-chain and (@1, P2, ...) is an S-chain, then
(¢0, Yo, ... D1, ...) I8 & strict S-chain; and

28Fine introduces the notion of an S-chain at [Fine, 2012a, p. 12]. His definition is slightly
different from the one offered here.
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4. nothing is a strict S-chain unless it is required to be so by clauses (1)-(3).2

The burden of the next three results is to show that, intuitively, we may think
of a strict S-chain as a sequence of sentences such that S implies that the first
member of the sequence is a partial strict ground of every subsequent member.

In what follows, when discussing S-chains I will omit the angle brackets ‘(" and
‘> 7'

Theorem B.1 If S F~ ¢, ... < ¢ and ¢ # 1 then there is an S-chain of the
form ¢, ...,1. [Fine, 2012a, p. 12, Lemma 4.4/

Proof The proof is by induction on the depth of the derivation witnessing S F~
¢, ... € 1. The basis case and most of the induction steps are trivial. T'll just
do the case of CUT for illustration. Suppose that a derivation witnessing the
derivability of a sequent of the form ¢, ... < ¢ from S ends with a CUT of the

form:

No<do A< ... ¢o,¢1,... <
Ag, Aq,... <Y

where ¢ € A; for some minor premise A; < ¢;.° The inductive hypothesis
(henceforth “TH”) gives us an S-chain ¢, xo, X1, ..., $; corresponding to this mi-
nor premise, and an S-chain ¢;, £y, &1, ..., ¥ corresponding to the major premise.
By the definition of S-chain, ¢, xo, X1, -, ®i» 0, &1, ..., ¥ is an S-chain.

O

We can prove a similar result by similar means for LSG:

Theorem B.2 If SF*~ ¢,... < or S F°~ ¢ < 9 then there is an S-chain of
the form ¢, ..., 1.

Theorem B.3 S = ¢ < v iff there is a strict S-chain of the form ¢,...,1.
[Fine, 2012a, p. 12, Lemmas 4.3, 4.4]

29This definition of a strict S-chain differs from Fine’s, which he offers at [Fine, 2012a, p.
12].

30From now on, I will say that a sequent o “comes by” a rule or (an inference of a given
form) to mean that there is a derivation witnessing the derivability of o which ends with an
application of that rule (or an inference of that form). For instance, the supposition I've just
made could be expressed instead by, “Suppose ¢, ... K 1 comes by CUT.”
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Proof =-: We'll show the stronger claim that if SF~ ¢ <y or SF~ ¢,... <
then there is a strict S-chain of the form ¢, ...,1. The proof is by induction on
the depth of derivations witnessing S F~ ¢ < ¥ or S = ¢,... <. The basis
case is trivial, and the induction steps are for the most part straightforward. I'll
do the case of TRANSITIVITY(=</<) for illustration. Suppose ¢ < ¢ comes
by an application of TRANSITIVITY (</<):

P=x x=<v
¢ =<

TH gives us a strict S-chain x, 0, ..., 1. If ¢ = x, then that strict S-chain suffices.

Otherwise, theorem B.1 gives us an S-chain ¢, ..., x. Clause 2 of the definition
of a strict S-chain then gives us the strict S-chain ¢,0...,v.

<: Suppose that ¢,..., is a strict S-chain. We’ll show S F~ ¢ < 9 by
induction on the recursive definition of strict S-chain.

Basis case: Suppose that our strict S-chain has the form ¢, ¥, Y1, ..., ¥y, ¥,
and either ¢ < ¥y or ¢, ... <1y is a member of S. By the definition of S-chain,
there are sequents ;, ... <€ ¥; 11 and ¥, ... < 9 in S. The application of SUB-
SUMPTION rules to each of these (other than ¢ < ) yields: S F ¢; < ;41 (for
each i) and S F 1, < 1. Thus, repeated application of TRANSITIVITY (</=)
will suffice.

Induction step: Suppose that our strict S-chain has the form ¢, xo, X1, ---Xn, Y0, ---, ¥,
where vy, ..., 1 is a strict S-chain and ¢, xo, X1, ---Xn, %o is an S-chain. As above,
applications of SUBSUMPTION yield S F~ ¢ < x0, S F~ x: < Xi41 (for each
i), and S F~ x, =< 1. Thus, repeated applications of TRANSITIVITY(=</=)
give us S F~ ¢ =< 9. IH gives us S F~ g < 1, so an application of
TRANSITIVITY(=/<) yields S F ¢ < 1.

Suppose now that our strict S-chain has the form ¢, ..., v, ...,%, where
@, ..., g is a strict S-chain and g, ...,% is a chain. TH gives us S -~ ¢ < vy,
and use of SUBSUMPTION and TRANSITIVITY(=</=) in the same manner
as above give us S F~ 99 < ®. Thus, an application of TRANSITIVITY(</=)
yields S F~ ¢ < 9.

O

Theorem B.4 Let S be a set of sequents of LSG. If there is a S-chain of the
form ¢, ....,0, then S F°~ ¢ < 1.
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Proof Suppose we'’re given a S-chain of the form ¢, ...,¥. We’ll prove the result
by induction on the length of that chain.

Basis case: Suppose @, ..., % has length 2. Then there is a sequent ¢, ... <
or ¢ < in S.

Induction step: Suppose that every chain of length less than n (where n > 2)
is such that the result holds. Let ¢,...,1 be a S-chain of length n. Then this
chain has the form ¢, ..., x, ¥, where ¢, ..., x is a S-chain of length < n. It’s also
easy to show that any final subsequence of a T'(S)-chain is also a S-chain, so
X, % is a S-chain of length 2. TH yields S F*~ ¢ < x and S F°*7 x < . A single
application of TRANSITIVITY yields the result.

O

Definition A (strict) S-loop is a (strict) S-chain of the form @, ..., &

An immediate corollary of theorem B.3 is that S is consistent in PLG just in

case there are no strict S-loops.

Definition A purely weak S-chain is an S-chain such that, for every adjacent
pair of sentences ¢, 1, S contains neither a sequent of the form ¢, ... <), nor a
sequent of the form ¢ < .

Another immediate corollary of theorem B.3 is that S is consistent in PLG just

in case every S-loop is a purely weak S-loop.

C Model Theory, Soundness, and Completeness
for LSG

Fine defines the notions of a fact model of PLG (and of a generalized fact model),
and defines the notion of truth in a (generalized) fact model for sequents of
PLG [Fine, 2012a, p. 8]. I will speak merely of “models” when discussing
(generalized) fact models. Let M be a model of PLG; following Fine, I will
write ‘M Epra o’ to mean that o is a sequent true in M. Fine also offers
the natural definitions of the truth of a set of sequents S in a model, and of a

sequent ¢’s being a consequence in PLG of S:

e aset S of sequents is true in a model M (M Epre S) iff (Vo € S)M Fpra

o; and
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e a sequent o is a consequence of a set of sequents S (S Eprg o) iff for all
models M, if M Epra S then M Epra 0.

We will use Fine’s semantics to give a semantics for LSG of the obvious sort:
e M is a model of LSG iff M is a model of PLG.
e A sequent o of LSG is true in a model M (M FE?® o) ifft M Eprg o;

e a set S of sequents is true in a model M (M E* 9) iff (Vo € S)M E® o;

and

e a sequent o is a consequence of a set of sequents S (S E* o) iff for all
models M, if M E° S then M E° ¢.

We now show that LSG is sound and complete for this semantics.

Theorem C.1 (Soundness) If SF° o, then S F° o.
Proof Every rule in LSG is derivable in PLG [Fine, 2012a, pp. 6, 7], so
(SF o= SFo).
Fine proves soundness for PLG [Fine, 2012a, p. 10, Theorem 3.2], so
(SFo= SkEpLg o).
Finally, it is an immediate consequence of the definition of ‘S F* ¢’ that

SEprg o= SFE®o.

The proof of completeness is a little more involved. Let S be a set of sequents

of LSG. We will prove two lemmas concerning S.

Lemma C.2 If SF ¢ <, then SH° ¢ <.

Proof The result is an immediate consequence of theorems B.3 and B.4.
O

To prove the second lemma, it is convenient to use a modified version of
CUT in PLG. Every application of the original version of CUT in PLG has the

following form:
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No<pg A< .. ¢0,01,...5¢
Ag,A,...< ¢

Call such an application of CUT pure iff either ¢ # ¢; for all i, or ¢ = ¢; for
all . Our modified version of CUT in PLG is such that (i) side premises are

allowed; (i) no minor premises are identities; and (éii) every instance is pure.

Thus, instances of the modified version of cut will have one of two forms:

Ag<do A1<d1 ... ¢0,01,....,I'<¢
Ag,Aq,...< ¢
or
Ap<op A1<¢ .. ¢T'<9
Ao Ay, T <o

where, for all i, ¢ # ¢; and A; # {¢;}. It is easy to see that anything derivable
using the original version of CUT is also derivable by this modified version and
vice versa. Instances of the modified version can be transformed into instances of
the original version by applying IDENTITY in PLG to yield minor premises of
the form v <~ for all v € I'. Instances of the original version can be transformed
into instances of the modified version in two steps: first, eliminate all minor
premises that are identities (unless all minor premises are identities, in which
case the major premise is also the conclusion); and second, split the result of

the first step into two pure parts if it is impure.
Lemma C.3 IfSFA<¢, then SF* A< ¢

Proof For the purposes of induction, it is useful to prove something stronger.
Suppose o is not an identity sequent, but is of either the form A + ¢ < ¢ or the
form A < ¢. We will show that if S+ ¢ then S F* A < ¢ by induction on the
depth of the derivation witnessing S . The basis case is trivial.

Induction step: The cases in which ¢ comes by SUBSUMPTION(</<), and
REVERSE SUBSUMPTION are trivial. The case in which o comes by NON-
CIRCULARITY is handled trivially by an application of Lemma C.2. So, as
usual, the most difficult case is CUT. Recall that there our modified version of

CUT may take only two forms, so there are two cases to cover.

1. o comes by a CUT of the form

Ag<po A <1 .. ¢o,01,.., <o
Ao Ay <0
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where ¢ # ¢; for any ¢ and none of the minor premises are identities.
TH applied to the major premise gives that S F° ¢g, é1, ..., (T'\ @) < ¢.
TH applied to the minor premises gives that S F* (A; \ ¢;) < ¢; for each
i. Let I'" be the set of sentences ¢; such that there is a minor premise
of the form A;, ¢; < ¢;. Then the sequent ¢g, @1, ..., (I'\ @) < ¢ that the
application of TH to the major premise told us was derivable from S in
LSG also has the form ¢q, ¢1, ..., (I'\ ¢),I" < ¢. So, the following is an
instance of CUT in LSG that yields the result:

(Ao \po) <o (A1\¢1)<¢1 ... ¢o,01,.... T\ ¢), T[T <¢
AOaAla"'7F\¢<¢

2. o comes by a CUT of the form:

Ao<¢p Ai<¢ .. ¢I'<9
AOaA17“'7F§¢

where none of the minor premises are identities. IH yields:

S (A \ @) < o, SH (A1\ ¢) < ¢, ces

If T # {¢} (so that the major premise is not an identity ¢ < ¢) then IH
also yields S F° (I'\ ¢) < ¢. Thus, an application of AMALGAMATION
yields the result

SE Ag, A, T\ <o

O

Notice that an immediate consequence of lemmas C.2 and C.3 is that PLG is

a conservative extension of LSG.3! This makes the proof of completeness easy.
Theorem C.4 (Completeness) If S E* o, then S+° o.

Proof Suppose o has either the form A < ¢ or ¢ < 1. It follows trivially from
the definition of ‘S F*® ¢’ that if S F°® o then S Fprg 0. Further, Fine proves
completeness for PLG [Fine, 2012a, p. 18, Theorem 6.4], so if S Epr¢ o, then
S F o. It remains only to show that if S F+ ¢ then S F° ¢. But this is an
immediate consequence of lemmas C.2 and C.3.

O

31Thanks to an anonymous referee for emphasizing this point.
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D Partial ground

One of the nice features of both LSG and PLG is that it possible to study the
consequences of a set of sentences for partial grounding claims in isolation, by, in
effect, using SUBSUMPTION to generate a set of exclusively partial grounding

glaims.

Definition For any set of sequents S, the partial image of S (S™) is the smallest
set P such that:

1. ifp <9 €S, then ¢p <9 € P;

2. ifp X1y €S, then ¢p <Y € P;

3. if A< €S, then (V¢ € A)p < 1 € P; and
4. if A<y e S, then (Vo € A)p < € P.

We can now show that the results of translating S allow the derivation of exactly

the same partial grounding sequents as the results of translating S=.

Theorem D.1 A sequence of sentences is a (strict) S-chain iff it is a (strict)

S=-chain.

Proof The theorem is a straightforward consequence of two facts: (i) there is a
sequent of the form ¢, ... < 1 € S iff there is a sequent of either the form ¢ <
or the form ¢ =< ¢ in S~; and (ii) there is a sequent of the form ¢,... < or
¢ <1 in S iff there is a sequent of the form ¢ < ) € S~

An immediate corollary of theorems B.2 and B.4 is that T(S) F°~ ¢ < ¢ iff
there is a T(S)-chain @, ..., . Now we’ll prove a similar result for our translation

of the partial image of S.

Theorem D.2 If T(S™) F°~ ¢ < 1, then there is a T(S)-chain of the form
¢7 "'7¢'

Proof 'We'll use an induction on the depth of the derivation witnessing T(S~) F*
¢ <.

Basis case: Suppose ¢ < ¢ € T(S™). If ¢ =, then ¢ < ¢ € S=. So either
p<¢peSor¢.<¢peS. Ineither case, T(S) contains a sequent ¢, ... < . If
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¢ # 1), then either ¢ < 1 € S~ or ¢ < 1) € S=. So, some sequent of the form
@,... < € S, and thus some sequent of the form ¢, ... < 1 € T(S).

Induction Step: Suppose that ¢ < 1 is derivable from T(S~) by TRANSI-
TIVITY from ¢ < x and x < 9. IH yields T(S)-chains ¢, ..., x and Y, ..., %, so
the result is immediate
O

The next theorem shows that we can squeeze witnessing constants out of the
middle of T(S)-chains.

Theorem D.3 If there is a T(S)-chain of the form ¢,...,1, then there is a

T(S)-chain of the form @, ..., which contains no witnessing constants between

¢ and 1.

Proof Witnessing constants do not appear on both sides of any member of
T(S). If there is a witnessing constant on the left of some sequent o € T(S)
then ¢ has the form A, b, < x (where A may be empty). If there is one on the
right, then o is A < b,,. So, no T(S)-chain contains two witnessing constants in

a row. Let
¢a .05 X0> bX7 X1y -eny w

be a T(S)-chain. Then there is a sequent of the form A, xo < b, € T(S5)
and a sequent of the form T',b, < x1 € T(S). Because the latter is in T(S),
X = Xx1- Because the former is in T(S), there is also a sequent of the form
A, xo < x € T(S). Thus, xo,x1 is a T(S)-chain, which suffices to show that

@y ooy X05 X1 -+, ¥ 18 & T(S)-chain.
O

We can also almost always remove them from the ends of T(S)-chains.

Theorem D.4 (i) If there is a T(S)-chain of the form ¢, ..., by, then there is
a T(S)-chain of the form ¢, ....1; and (ii) If there is a T(S)-chain of the form
bg, ..., ¥ and either ¢ # 1 or the length of the chain is greater than 2, then there
is a T(S)-chain of the form ¢, ..., 1.

Proof (1) follows straightforwardly from the fact that for every sentence ¥ € S*,
by < € T(S). () follows from the fact that witnessing constants appear on
the left of sequents in T'(S) only if those sequents have the form A, b, <x (where
A may be empty).
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Theorem D.5 If there is a T(S)-chain of the form ¢, ..., (where ¥ is not a
witnessing constant), then T(S=)F~ ¢ < 4.

Proof Suppose we're given a T(S)-chain of the form ¢, ...,?. By theorem D.3,
we may assume that there are no witnessing constants between ¢ and . We’ll
prove the result by induction on the length of that chain.

Basis case: Assume our T(S)-chain ¢, ..., has length 2, i.e. the chain has
the form ¢, 4. If ¢ is a witnessing constant, then ¢ = by; and, since by, < is in
the b-expansion of S, by <1 € T(S). If ¢ = 1, then there is a sequent ¢, ... <t
or ¢ <1 € 8, and so that same sequent will be in T(S). If ¢ # 1), then there
is a sequent ¢, ... < 1 € (S), and so either ¢ < 1) or ¢ < ¢ is in S=.

Induction Step: Suppose that every chain of length less than n (where n > 2)
is such that the result holds. Let ¢,...,% have length n. Then, for some ¥,
@, ..., has the form ¢, ..., x,¥. IH gives us T(S7) = ¢ < x. Since x, ¥ is
also a T(S)-chain, IH also gives us T(S™) = x < %. A single application of
TRANSITIVITY yields the result.

O

Finally, we show that the result of applying an identification scheme to a
partial image of a set .S of sequents is the same as partial image of the result of

applying the identification scheme to S.

Theorem D.6 For all identification schemes f, f(S~) = f(S)~.

Proof =-: Suppose o € f(S™). There are four cases:
(i) ois f(¢) < f(¥) for some ¢, such that ¢ < ¢ € S=, and either

(a) ¢,...<tp € Sor
(b) o< €S.
(i) o is f(¢) = f(1) for some ¢, such that ¢ < ¢ € S<, and either
(a) ¢,...<¢ €S or
(b) ¢ =2 eS.

In (ia): f(¢,... <®) € f(5). Thus, f(¢),... < f(¥) € f(5), s0 f(¢) < f(¢) €
f(8)7. In (b): f(¢ <¥) € f(S). Thus, f(¢) < f(¢) € f(5), s0 f(¢) < f(¢) €
CInE
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Similar arguments handle cases (iia) and (ib).

<: Suppose ¢ € f(S)™. There are four cases:
(i) ois ¢ <1, and either

(a) ¢, ¢0,¢1,... < € f(S) or
(b) ¢ < € f(S5).

(ii) o is ¢ =1, and either
(a’> ¢7¢07¢17 S 1/} S f(S) or
(b) ¢ =y e f(9).
In (ia): There are sentences ¢*, ¢f, @1, ..., 1™ such that
[ ) =90,  f(¢5) =do,  fld1) =01, ... f(¥") =9

and ¢*, @5, &7, ... <¢* € S. So, ¢* < ¢* € S=, and thus f(¢*) < f(¥*) (i.e.
¢ <) € f(S7). In (ib): There are sentences ¢*,1)* such that

and ¢* < ¥* € 5. So, f(¢*) < f(¢) € f(57).
Similar arguments handle cases (iia) and (ib).
O

Theorem D.7 For all identification schemes f, if ¢ and i are not witnessing

constants, then

T(f(9) F* ¢ =¥ iff T(f(ST) B~ o <.

This theorem is an immediate upshot of theorems B.2, B.4, D.2, D.5, and D.6.

E Witnessing constants in derivations

We can prove two results that are useful for dealing with witnessing constants in
derivations in LSG. The first result is useful for eliminating witnessing constants

from the left-hand side of a sequent.
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Theorem E.1 (Factorization Lemma) Suppose ¢ is not a witnessing con-
stant. If T(S)F~ A<¢ and by ¢ A, then there is a A* such that A* C A and
T(S) = A* <by.

Proof We’ll use an induction on the depth of the derivation witnessing T'(S) F*~
A <.

Basis case: A < ¢ € T(S). Then A < by € T(S5).

Induction step: Suppose A < ¢ has the form Ay, Aq,... < ¢ and comes by
AMALGAMATION:

A< A1 <o

A(), Al, ceey <¢
IH gives us, for each ¢ a nonempty AY such that T(S) F~ A¥ < bs. Let
A* = AFUAT, ...
Suppose A < ¢ has the form I', Ay, Ay, ... < ¢ and comes by CUT:

Ag<pg A1 <1 ... T,¢0,¢1,...<09
F,Ao,Al,...<b¢

If by = ¢; for some 4, then one of the minor premises has the form A; < by
and we’re done. Otherwise, ITH gives us some subset I'* of I' and some subset
{&6, %, ...} of {po, 1, ...} such that T*U{§, ¢7, ...} is non-empty and T(S) F°~
I*¢8, 1, ... <bg. Let

Ap<¢p, Al <9I,

be the minor premises A; < ¢; such that ¢; € {¢§, ¢7,...}. We have, then, the
following CUT in LSG:
Af <oy AT <ot ... T*05,67,... <bg
T AL AL . <by

It is easy to verify that I'" U A U Aj, ... is a subset of ' U Ag U Aq, ...
O

Theorem E.1 says we may use CUT in LSG to eliminate a witnessing constant
bg from the left-hand side of a sequent if we are given a premise A < ¢ whose
left-hand side does not contain bs. But the application of CUT leaves only a
subset of A in place of bg. This next result shows in effect that we may replace

by with all of A, rather than just a subset.
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Theorem E.2 If T(S) F°~ T, by,, by, , ... <9 and
T(S) F~ 2o < Yo, T(S) F 2 < 1, yeney
then T(S) F= T, =y, b’¢'07 El7b1/)17 e <

Proof Suppose we're given a derivation d witnessing T(S) F5~ T, by, , by, , ... <%,
and we're given T(S) F°~ Z; <), for each i. As a notational convention, let =,
designate =; if x = ;. We’ll show by induction that every subderivation of any
derivation d witnessing T'(S) F°~ T, by, , by, , ... <t has the following property: if
the conclusion of the subderivation is a sequent o of the form A, by by s oo <,
where by, by, ... are exactly the witnessing constants on the left-hand side of
o in {byg, by, ..}, then T(S) F°7 A, Zyy by, Zyr, ... < ¢. The strategy of the
proof is pretty obvious: we find all of the places in the derivation where a
relevant witnessing constant by, first appears on the left. There we dump Z;
into the left-hand side by an application of AMALGAMATION. Then we make
sure to schlep =; along though the rest of the derivation, reserving it as a set of
side-premises in any applications of CUT.

Basis case: o is a premise in d. Since o contains a witnessing constant among
by, by s ., 0 has the form A, by, < ;. By hypothesis, T(S) F°~ E; < ;. An
application of AMALGAMATION gives us T(S) F°~ A, E;, by, < ;.

Induction step: Suppose o comes by AMALGAMATION in a subderivation
of d:

Ag,Bo<¢p A,B1<¢
Ag, A1, ..., By, By, ... < ¢

where, for each i, B; is the set of exactly the witnessing constants in {by,, by, , ...}
in the antecedent of the relevant premise. IH gives us, for each premise A;, B; <
¢, T(S) F°~ A, E}, Bj < ¢, where Z7 = [J{Zi[by, € B;}. Thus, an application
of AMALGAMATION yields the result.

Suppose o comes by CUT in a subderivation of d:

AOaBO<¢O A17Bl<¢l F7¢05¢1a“'<¢
F7A0,A1, vy Bo, B,y ... < @

where, as above, for each i, B; is the set of relevant witnessing constants. TH
gives us for each minor premise A;, B;j<¢;, T(S) -~ Aj;, E7, Bj<¢, where =7 =
U{Z:lby; € B;}. Let B be exactly the witnessing constants in {by,,by,,...} in
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the antecedent of the major premise. IH gives us T(S) = I, ¢, ¢1, ..., 2* < ¢,
where 2 = |J{E;|by, € B}. Thus, an application of CUT gives us

T(S) F5— F,E*7A0,ES,B0,A17ET731, < Qﬁ

It is easy to verify that

F Correpondence of - and -°

Theorem F.1 If S+ o, then for all identification schemes f, f(o) either is a
weak identity or has a translation T such that T(f(S)) F* 7.

Proof Fix f. We'll prove the result by induction on the depth of any derivation
d witnessing S F 0. The basis case is trivial. Suppose, then, that the result holds
for all proper subderivations of d. We’ll show it also holds for d. The case where
o comes by CUT is by far the hairiest. Most of the other cases are straight-
forward. T'll do SUBSUMPTION(</=), and REVERSE SUBSUMPTION for
illustration. Then I'll finish with CUT.

SUBSUMPTION(</=): Suppose that o is ¢ < 1 and comes by an inference

of the form:

¢, ¢0, P1,... <Y

o=y
If f(¢) = f(), then f(o) is a weak identity, and we’re done. Suppose, then, that
f(®) # f(ap). TH gives us T(f(S)) F° 7 for 7 some translation of f(¢, ¢g, d1, ... <

). Recall that T(f(S)) applies the translation function T to the b-expansion of
the result f(S)* of removing all weak identities from f(.S). Thus our translation
7 has either the form f(¢),...<f(¢) or the form by(4),...< f(3). So, theorem B.2

gives us either a T(f(S))-chain f(¢), ..., f(¢) or a T(f(S))-chain bs(g), ..., f(¢).
In the latter case, theorem D.4 gives us T(f(S))-chain f(¢), ..., f(¢). Thus,

theorem B.4 implies T(f(S) F f(¢) < f(¥).

REVERSE SUBSUMPTION: Suppose that o is ¢g, ¢1,... < ¢ and comes

by an inference of the form:
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G0, P1,... <O Po <P ¢1 <9
b0, P15 < @
If f(¢) = f(¢;) for any 4, then the translation under f of one of the premises
f(¢: < ¢) also has the form f(¢) < f(¢), and IH and an application of NON-
CIRCULARITY in LSG suffices.>>  Suppose, then, that f(¢) # f(¢;) for
any 4. IH gives us T(f(S)) F° 7 for 7 some translation of f(¢g,d1,... < @).
So, 7 has the form B < v, where B is a b-version of {f(¢o), f(¢1),...}, and
¥ & {f(¢o0), f($1),...}. Thus, 7 is also a translation of f(¢g, @1, ... < ¢).

CUT: Suppose, finally, that o is Ag, Aq,... < ¢ and comes by an inference of
the form:

No<pog A< .. ¢0,01,...5¢
Ag,Aq,...< o

TH gives us: (i) for each minor premise A; < ¢, that is not a weak identity, a
translation ; of f(A;)<f(¢;) such that T(f(S)) F* 7;, and (4) a translation 7 of
f(do, @1, ... <) such that T(f(S)) F* 7. (We're assuming that f(¢o, ¢1,... <)
is not a weak identity, since otherwise we could apply AMALGAMATION to the
translations 7; of the minor premises to get a translation of f(o), and we would
be done.) If ¢ is a sentence, let an occurrence of ¢*° in a specification of the
form of a sequent or a set of sequents stand for either ¢ itself or its witnessing
constant bs. Thus, 7 has the form f(¢o)*?, f(¢0)*?, ..., <f(¢). Let

A= A{7lf(Ai) #{¢i}}-

Intuitively, A is the set of translations of non-identity premises (under f) in the
cut: we may think of these as the “active” premises in the cut, since identity
premises cannot be used in an application of CUT to add or remove sentences
from the left-hand side of a sequent. (If A is empty, then 7 is a translation of
f(o) and we're done.) Let

T = {f(¢s)*°|f(¢;)*? is in the left-hand side of 7 and 7; ¢ A}

I will be a set of side sentences for CUT in LSG. A has two (possibly overlap-
ping) subsets W and M:

W = {1; € Albsy,) is in the left-hand side of 7}

32This is the only place in the proof of this theorem where a normal derivation in PLG of
a sequent corresponds to a non-normal derivation in LSG of a translation of that sequent.

40



M = {7, € A|f(¢:) is in the left-hand side of 7}.

Intuitively, W is the set of translations of premises whose right-hand side f(¢;)
may fail to be matched by an occurrence of f(¢;) in the left-hand side of 7: it’s
the set of premise translations suffering from a potential “witness mistmatch”
problem. Finally, let AV < ¢V, AW < ¢V ... be exactly the members of W,
and AY < ¢df, AM < ¢M | ... be exactly the members of M. 7 has the form:

F7¢(J)\/l7¢i\/l7 ab¢[‘;‘/7b¢‘1/vﬂ < f(¢)

We’ll do two applications of CUT in LSG, and show that the result is a trans-
lation of o. First, let 7* be the conclusion of the following application of CUT
in LSG:

F,Aé\/l,A{VI, ...,b¢gv,b¢¥v, < f((b)(z T*)

Recall that IH gives us
T(f(S)F°AY <¢y . T(f(S)F AY <o,
So, an application of theorem E.2 to 7* gives us
T(f(S) F° T, A0, AV s A bgw s ALY bgw s . < f(9).

It remains only to remove witnessing constants byw such that #¥ is not in the
left-hand side of any translation of f(o). Let ¢} b’e a sentence such that b¢7w is
in the left-hand side of 7%, but there is no ¢ in the left-hand side of o such fhat
f() = ¢V, Then A} contains neither ¢}V nor byw , so theorem E.1 applies to
give us a subset A} of A} such that T(f(S)) F* A} <byw. Thus, the following
application of CUT in LSG suffices: |

A8<b¢gv Af<b¢‘lxv F7A6VI,A{V[,...,Ag/,b¢(¥v7A¥V7b¢¥v,...<f(¢)
D,AM AM AW Ay AV AT L < f(o)

It is easy to verify that the left-hand side of the conclusion of this cut contains
exactly the members of left-hand sides of the translations 7; of f(A;) < f(:).
Thus, the conclusion of this last application of CUT in LSG is a translation of
f(Ag, Ay, ... < 9).

O
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The result cannot be improved to show that anything normally derivable
from S in PLG is normally derivable from T'(S) in LSG. In footnote 32 I
flagged the one place in the proof of this theorem where an appeal is made
to NON-CIRCULARITY in LSG when there was no corresponding application
of NON-CIRCULARITY in PLG. This use of a non-normal derivation in LSG is
essential. For instance, there is a normal derivation in PLG of ¢ < ¢ from ¢ < ¢,
using IDENTITY and REVERSE SUBSUMPTION. There is no corresponding
normal derivation in LSG. It is obvious that any such case will be one in which

S itself is inconsistent in PLG. So, the proof of F.1 also establishes:

Theorem F.2 if S is consistent in PLG, then S o only if for all identifica-
tion schemes f, f(o) is either a weak identity or has a translation T such that

T(f(S)) F*~ 7.

Theorem F.3 (<-Sufficiency) Suppose o is not a weak identity, but has the
form 2 < ¢, and let T be a translation of o. If T(S) F°~ 7, then S+~ o.

Proof We'll assume that o does not have the form ¢ < ¢, since in that case
the result is trivial. We’ll prove the result by induction on the depth of any
derivation d witnessing T'(S) F*~ 7. For the purposes of induction, we’ll show
the stronger result that if T(S) F*~ 7 and 7 has the form Br < ¢** where Br
is a b-version of I', then S F~ T" < ¢.

Basis Case: Suppose 7 € T(S) and has the form Br < ¢**. Then 7 is a
translation of some sequent in the b-expansion of S*, which results from remov-
ing all weak identities from S. If 7 is a translation of a member of S*, then
we’re done. If 7 has the form A < by, then either A < ¢ or A < ¢ is a member
of S* and we’re done.

Induction step: Suppose T comes by an application of AMALGAMATION

of the following form:

S <™’ E1<o*
E<ott(=7)

IH gives, for each of the premises a sequent =} < ¢ such that S+~ 2 < ¢ and

E; is a b-version of Z. Fine shows that

AMALGAMATION(<): Ag<é¢ A <o
A07 Al; s S ¢
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is valid in PLG. Thus, the following application of AMALGAMATION(<) in
PLG suffices:

(1]
[1]

IN | =%
S IA

0S¢

—_
—
[l

*

Suppose 7 comes by an application of CUT of the following form:

o) +b = +b +b £Db
So< it Ei<of’ .. T30 670 .. < ¢t
I,Z,51,... < ¢%?

By a similar argument as in the case of AMALGAMATION above, IH gives, for
each of the minor premises, a sequent = < ¢; such that S+~ Zf < ¢ and 5; is
a b-version of 7. By the same sort of argument, there is a I'*, such that I' is a
b-version of I and S F~ T'™*, ¢, ¢1, ... < ¢. Thus CUT in PLG suffices.

d

Theorem F.4 (<-Sufficiency) Suppose o is not a weak identity, but has the
form ¢ <1, and let T be a translation of o. If T(S™) 5~ 7, then S*+~ 0.

This result follows from a very simple induction on the depth of the derivation
witnessing T(S™) F~ 7.

Theorem F.5 (<-Sufficiency) Let o be ¢ < . If, for all identification
schemes f, T(f(S)) F°~ f(o), then S+~ 0.

Proof By D.7, it is enough to show that, if (Vf)T(f(S~)) F*~ f(o), then S+ 0.
Assume T(S™) F5~ ¢ < 1. Let f be an identification scheme such that f(x) = ¢
if x is a member of any purely weak chain of the form ¢, ...;1; and f(x) = x
otherwise. We’ll show that if T(f(S<)) F*~ f(¢ < ¢¥), then S+~ ¢ < ¢ by
induction on the depth of the derivation d witnessing T'(f(S™) F*~ f(¢ < ).
Note that theorem F.4 implies that S = ¢ < 1, so either ¢ = ¥ or there is an
S-chain of the form ¢, ..., ¢ by B.1. We may assume that any S-chain of the form
¢, ..., 1 is purely weak, since otherwise theorem B.3 would give us S+~ ¢ < 9
and we’d be done. Thus, f(¢) = f(¥), and so f(¢ < ¥) = ¢ < f(¥).

Basis case: Suppose ¢ < f(¢) € T(f(S7). ¢ < f(v) € T(f(S7)) iff
there is a sentence x such that f(x) = f(¥)) = ¢ and either ¢ < x € S™ or
=X xeST. Butifp<1p ¢ S¥, ¢ =3xS, and f(x) = ¢, then f(o X x) is
a weak identity, and so ¢ < f(v) € T(f(S™)). So,

¢ = f(¥) € T(£(S7)) iff ) (f(x) = f(¥) and ¢ < x € S7)
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If f(x) = f(¥) = ¢, then there is a purely weak S-chain of the form ¢, ..., x;, ..., ¥.
Further, if ¢ < x € S=, then there is a strict S-chain ¢, ..., x. So, there is a
strict S-chain ¢, ..., 1. Thus, theorem B.3 gives us S+~ ¢ < 1.

Induction step: Suppose that f(¢ < 1) comes by TRANSITIVITY in LSG:

o= f00) OO =< f()
¢ < f(¥)
Suppose that f(x) # x. Then f(x) = f(¢), and IH suffices. So, suppose that
f(x) = x. If f(x) = ¢, then TH suffices. Otherwise, it’s easy to show that there

is an S-chain ¢, ...y and an S-chain Y, ...,4. Thus, we are given an S-chain

@, .oy X, . Since f(x) = x, this last S-chain is not purely weak. Thus, there
is a strict S-chain ¢, ...,%, and theorem B.3 yields the result.

Theorem F.6 (<-Sufficiency) Let o have the form A < ¢. If, for every
identification scheme f, there is a translation T of f(o) such that T((f(S)) F*~
T, then S+~ o.

Proof Suppose that (Vf)T(f(S)) F~ some translation of f(o). Now,

f(A <) =[(60), f(01),... < f(¢)  (di€A).

So, for all identification schemes f and all members ¢ of A, T(f(S)) F°~
f(6)*P < f(¢). If € A, then any translation of f(A<¢) has f(¢) (rather than
just by(s)) on its left-hand side. Thus, by theorems D.4 and B.4, for all f and
for all 6 € A, T(f(S)) F*~ f(8) < f(¢). Thus, theorem F.5 yields S+~ § < ¢,
for all § € A. An application of theorem F.3 yields S F— A < ¢;*® and so
REVERSE SUBSUMPTION in PLG gives us S -~ A < ¢.

O

An immediate corollary of theorems F.3, F.4, F.5, and F.6 is that if S is
consistent in PLG, then S F o if (Vf)T(f(S)) F°~ some translation of f(o).
This yields the following (qualified) conservativity result:

Theorem F.7 If S is consistent in PLG, then S+ o iff for all identification
schemes f, f(o) either is a weak identity or has a translation T of f(o) such
that T(f(S)) F*~ 7.

33if 7 has the form Z, ¢ < ¢, then it technically is not a translation of Z, ¢ < ¢. But such a
translation can easily be derived in LSG using the following instance of CUT.

bp<¢p E,¢<9
Eby < ¢
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Proof Suppose S is consistent in PLG. Theorem F.2 implies the biconditional
in the left-to-right direction. Together, theorems F.3, F.4, F.5 and F.6 establish
that if (Vf)T(f(S)) F°~ some translation of f(o), then S+~ o.

O

This allows the following characterization of derivability in PLG:

Theorem F.8 S+ o iff either S is inconsistent in PLG, or, for all identifica-
tion schemes f, if f(o) is not a weak identity, then it has a translation T such
that T(f(S)) F~ 7.

Proof There are two cases:
(4) S is inconsistent in PLG; or
(4i) S is consistent in PLG.

In (¢): For all sequents o, S F o. Likewise, the first disjunct on the right-hand
side of the theorem is true.

In (4): Theorem F.7 yields the result.

O

And, of course, theorems F.1 and F.5 immediately imply that the consistency

of S can be characterized in terms of derivability in LSG:

Theorem F.9 S is inconsistent in PLG iff there is a sequent ¢ < ¢ such that
for all identification schemes f, T(f(S)) F°~ f(¢) < f(9).

Thus, the derivability of a sequent from some premises in PLG can be exhaus-
tively characterized in terms of derivability in LSG of a translation of the sequent
from the translation of those premises.

The last theorem does not quite guarantee that when S is consistent there is
an identification scheme under which the translation of S is also consistent. That
would require there to be a single identification scheme f such that T(f(S)) is
consistent. However, it is easy to give a simple general recipe for constructing

such an identification scheme given a consistent set of sequents.

Definition ¢ and ¢ are S-loopmates iff either ¢ = ¢ or there is a purely weak
S-loop containing both ¢ and .
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It is obvious that being S-loopmates is an equivalence relation on the set of
sentences. The equivalence class to which a given sentence ¢ belongs is given
by:

¢° = {¢|¢ and 1 are S-loopmates.}

Theorem F.10 Let f§ be an identification scheme such that
(V) (W € ¢°)(3x € 6°) () = x-

If S is consistent, then T(f3(S)) is consistent.

Proof We first show the following lemma:

Lemma F.11 If T(f3(S™)) F°~ f3(¢) < fS(¥), then there is an S=-chain of
the form ¢, ...,1 which is not part of any purely weak S=-loop.

Proof The proof is by induction on the depth of the derivation witnessing
T(f(S7™)) F°~ f(¢) < f3(¥). The induction step is trivial, so I'll only give
the argument for the basis case.

Basis case: Suppose f&(¢) < f&(¥) € T(f(S™)). Then either ¢* < 9* or
¢* < ¢*isin ST, for f§(¢) = ¢* and f(v) = ¥*. In the former case, ¢*,*
is a strict S=-chain, and so not part of any purely weak S=-loop. In the latter
case, f&(¢*) # f3(v¥*), since otherwise f&(¢* < 1*) would be a weak identity.
So, ¢* and ¥* are not S-loopmates. Thus, ¢*,9* is an S-chain and there is no
purely weak S-loop of which ¢*,¥* is a part. If ¢* # ¢, then there is an S-chain
of the form ¢, ...,¢*. If 1 # ¢* then there is an S-chain of the form ¢*, ..., .
Thus, there is an S-chain from ¢ to 1, of which ¢*,¢* is a part. The result
follows immediately.

O

Now, suppose that there is a sentence ¢ such that T(f$(S)) F°~ f$(¢) < f3(9).
By theorems D.7, D.1 and lemma F.11, there is an S-loop of the form ¢, ..., ¢
which is not part of any purely weak S-loop. Thus, the loop is not itself a purely
weak S-loop.

O
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