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Logic, as standardly conceived, is the science of consequence: a logic tells us

which claims follow from which. Quantified modal logic (QML) is supposed to

tell us which claims follow from which in a language which provides the means

to express both metaphysical modality and quantification.1 One might think

on this basis that we can determine which is the correct QML independently

of substantive questions of science and metaphysics: modal logic, on this view,

cannot tell us whether it is possible that there be no numbers; nor can it tell

us whether, necessarily, everything is at bottom physical. At most, it might be

held, logic can tell us what follows from these claims. We might dub this view

neutralism about QML, since it holds that the correct QML must be neutral on

substantive disputes in modal metaphysics.

It is difficult to find an extended, full-throated defense of neutralism in the

literature.2 But Timothy Williamson’s Modal Logic as Metaphysics provides an

extended, full-throated criticism. Williamson aims to show how, in particular,

the model theory of QML bears on a substantive, if highly abstract, dispute in

modal metaphysics.

Consider one of the most obvious things about the Sun: it is such that there

is something identical to it. More briefly, it is something. Being something,

of course, does not make it unique. It shares this feature with everything. Is

1Of course, there are applications of the study of the formally specified languages of QML
in which ‘�’ is interpreted as something other than metaphysical modality. Those applications
of the formalism are irrelevant to our discussion.

2Perhaps [Kaplan, 1989, pp. 42-43] offers a defense.
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the Sun, however, such that, possibly, nothing is identical to it? Is it possible,

that is, that it have failed to be anything at all? Plausibly, the answer is yes.

Plausibly, the physical constants characterizing the laws of our universe might

have been just different enough so that there were no stars at all, and so no Sun.

Consider another, equally obvious thing about you: you are such that, actually,

something is identical to you.3 You share this feature with everything. But

might there have been something which, in contrast with you and everything

else there actually is, is actually nothing? Again, plausibly, the answer is yes.

There might, it seems, have been a magma plume below Vermont, so that there

was a volcano where instead my university actually stands. But, it would seem,

if there were such a volcano, it would also be such that, actually, nothing is

identical to it.

The view Williamson calls necessitism answers no to both of these ques-

tions. Necessitists hold that, necessarily, everything is such that, necessarily,

something is identical to it. More briefly, necessitism is the view that, neces-

sarily, everything is necessarily something. So, necessitists hold that the Sun

is necessarily something, and thus would be something even if there were no

stars.4 Similarly, necessitists hold that, necessarily, any volcano in Vermont is

necessarily, hence actually, something. The question of whether necessitism or

its negation, contingentism, is true is a substantive metaphysical dispute. Nev-

ertheless, Williamson argues, one can fruitfully bring the model theory of QML

to bear on this dispute, thereby providing reasons for favoring necessitism.

The book starts with an explanation of necessitism and contingentism and

related views (Ch. 1) and a history of the development of QML and modal

metaphysics (Ch. 2). Williamson then explores a proposal concerning how

possible worlds semantics bears on the necessitism-contingentism dispute (Ch.

3). In later chapters, he considers a particular contingentist approach to possible

worlds semantics (Ch. 4), and offers an explanation and defense of higher-

order QML (Ch. 5). He then lays out two main arguments that necessitism is

preferable to contingentism (Chs. 6-7). Briefly, Williamson contends that (i)

standard contingentists cannot accept higher-order comprehension principles

3The ‘actually’ operator here is the operator defined by Kaplan [1989]: in particular, φ is
simply true iff ‘necessarily actually φ’ is.

4In a situation in which there are no stars, a necessitist would of course say that the Sun
would not be a star; Williamson suggests that she also say that the Sun would not be concrete
(pp. 7-8). Perhaps a necessitist might be tempted to say that the Sun does not exist in such
a situation; Williamson counsels against this strategy (p. 19).
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of the strength necessary for ordinary mathematical purposes; and (ii) that

necessitists but not contingentists of a certain stripe can make distinctions,

using the resources of higher-order QML, that the contingentist ought to regard

as legitimate. He closes the book by describing some of the philosophical upshots

of necessitism and making some methodological remarks (Ch. 8 ff.). I will focus

in what follows on Williamson’s Ch. 3 proposal for bringing possible worlds

semantics to bear on the debate over necessitism.

1 Kripke-Style Semantics for QML

Since Frege and Russell at least, the study of logic has focused on artificial,

formally specified languages, whose syntax and semantics are particularly easy

to state and study, and whose primitive symbols, with the exception of a few

distinguished connectives, operators, etc., are often uninterpreted. These unin-

terpreted strings are then given a semantics which specifies in set-theoretic terms

an interpretation for each complex expression on the basis of stipulated inter-

pretations for the simpler expressions from which it is derived. In the broadly

Kripkean possible worlds semantics for QML that is now standard, each such

model presumes that, in the background, we are given a non-empty set of indices

W , a distinguished member of that set of indices w, a relation R on W , and a

function D that maps each member w∗ of W to a set D(w∗).5 Williamson calls

any tuple 〈W,R,w,D〉 meeting these conditions an inhabited model structure

(p. 121).

The details of the semantic clauses specifying conditions for truth in a model

are a matter of some difficulty. For now, let’s use an extension of the system pro-

posed in [Kripke, 1963]. In particular, we follow that treatment by considering a

language with no individual constants.6 We will extend Kripke’s treatment by

allowing a distinguished identity predicate ‘=’. In a given model M , predicates

are assigned extensions at every world; the extension of an n-place predicate at

a world is a set of n-tuples of objects, where each object is in the domain of

some world. Open formulae are evaluated relative to both a world w and an

assignment a. Any of the values of a may be members of the domain of any

5Some work in broadly Kripkean possible worlds semantics does not assume that we are
given a distinguished member w of the set of indices W . I will ignore this wrinkle in what
follows.

6This is the one respect in which the present setup differs from Williamson’s (p. 121). I
will revisit the question of individual constants later.
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world whatsoever. The clauses for atomic formulae, conjunctions, and negations

are just what one would expect them to be. Quantifier ranges, however, are re-

stricted to the domains of the world of evaluation: a quantified formula (∀x)φ

is true at a world w on an assignment a iff φ is true at w on every x-variant of

a that assigns a member of D(w) to x. Truth for a sentence (a closed formula)

at a world can be de-relativized from assignments by quantification in any of a

number of ways: we might, for instance, say that a sentence is true at w iff it is

true at w on every assignment, or we might instead say that a sentence is true

at w iff it is true at w on some assignment. It doesn’t matter, since a sentence

true at w on any assignment is true at w on all of them.7 Williamson chooses

the universal form of de-relativization (p. 120), and extends it to all formulae:

a formula φ is true at w iff it is true at w on all assignments. We will revisit

this choice in our discussion below.

Here, for convenient reference, are the semantic clauses for the recursive

definition of the truth of a formula φ in a modelM at a world w on an assignment

a (M,w, a � φ). V is the model’s assignment of extensions in every world to

the non-logical predicates (i.e., the predicates other than ‘=’) of the language.

1. M,w, a � Fx1, x2, ..., xn iff 〈a(x1), a(x2), ..., a(xn)〉 ∈ V (F )(w);

2. M,w, a � x1 = x2 iff a(x1) = a(x2);

3. M,w, a � ¬φ iff M,w, a 6� φ

4. M,w, a � (φ ∧ ψ) iff M,w, a � φ and M,w, a � ψ;

5. M,w, a � (∀x)φ iff (∀d ∈ D(w))M,w, a[x/d] � φ; and

6. M,w, a � �φ iff (∀w∗)(wRw∗ ⇒M,w∗, a � φ).

2 Metaphysical Universality

With these technical details on the table, it’s easy to see that studying the for-

mal properties of the language of QML using possible worlds semantics is an

7Here I assume that D(w∗) is non-empty for all w∗ ∈W . Technically, the definition of an
inhabited structure imposes no such requirement. In the present context, the assumption is
harmless because intended structures will verify the assumption: it is necessary, for instance,
that something is the empty set. If we drop the assumption, then the point in the main text
can be made by appeal to a de-relativization which says that a sentence is true at w iff there
are at least as many assignments on which it is true at w as those on which it is false at w.
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interesting, powerful, but ultimately purely mathematical enterprise. After in-

troducing the notion of a model structure, it is traditional to offer an elucidatory

remark like, “intuitively, W is a set of possible worlds, w is the actual world, R

is an accessibility relation, and D(w∗) contains the objects that exist at w∗.”

But these elucidatory remarks are just supposed to help the reader cotton on

to the roles the various elements are supposed to play in the semantics; they’re

not officially part of the mathematical story. Officially, any entity whatsoever

can figure in a Kripke-style model. You, for instance, are an index of some

inhabited model structure. How, then, are we to get the math to bear on the

metaphysics?

Standardly, it is thought that we can bring model theory to bear on meta-

physics by isolating an intended class of models. Models in the intended class

interpret the expressions of the language of QML in the way we intend when we

are asking after the features of modal reality. So, the sentences verified by all

models in such a class may reasonably be taken accurately to characterize fea-

tures of modal reality. But which classes of models are intended? Williamson’s

strategy for answering this question proceeds in two steps. First, isolate what

one might plausibly take to be the logical truths concerning metaphysical neces-

sity:8 a set of formulae in the language of QML that, when ‘�’ is interpreted as

metaphysical necessity, ‘=’ is interpreted as identity, quantifiers are interpreted

as absolutely unrestricted, and connectives are interpreted in the standard way,

are true independently of the interpretations of other symbols.9 Second, spec-

ify a class of intended model structures by appeal to the set of logical truths: a

structure is intended iff its logic – the formulae verified by all models with that

structure – coincides exactly with the set of logical truths concerning metaphys-

ical necessity. Then a class of models is intended if it is the class of models of

an intended structure.

What are the logical truths of metaphysical modality? We will isolate only

those truths which may be expressed in the language of first-order QML, though

8I am ignoring here the distinction between logical truth and logical consequence; see p.
94. This distinction will not substantially affect the discussion.

9The non-logical truths of metaphysical necessity are those whose truth depends, in part,
on the intended interpretations of other vocabulary. So, for instance, if ‘it is necessary that
Socrates is not a world war’ is true, then its truth depends on the intended interpretation of,
among other things, ‘is a world war’; if ‘is a world war’ were interpreted so as to express the
property being a philosopher while other expressions retain their actual interpretations, then
the erstwhile truth (or its orthographic duplicate) would be false.
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Williamson’s criterion will appeal to an extension of that language.10 Suppose

we are given a formula of the language of QML, and an infinite stock of fresh

variables of the following types: invididual variables, and n-place predicate

variables, for each natural number n. (We think of sentence letters as 0-place

predicates.) Uniformly replace each of the non-logical constants by variables

of the appropriate type, then close the result by prefixing universal quantifiers

for each free variable. Call this the universal generalization of original formula.

Suppose, to illustrate, that the formula is �(∃x)(Fx ⇔ x = y). We obtain its

universal generalization by first replacing the only occurrence of the only non-

logical constant ‘F ’ in the formula by a variable ‘Y ’ to yield �(∃x)(Y x⇔ x = y),

and then prefixing the result with appropriate universal quantifiers to yield

(∀Y )(∀y)�(∃x)(Y x⇔ x = y). Notice that occurrences of quantifiers, variables,

modal operators, connectives, and the identity predicate remain.

The universal generalization of a formula φ will be a sentence (i.e., a closed

formula) of a second-order extension of the language of QML. Williamson as-

sumes that we have an understanding of the higher-order quantifiers that is

primitive in the sense that there is no satisfactory interpretive account of those

quantifiers that does not itself deploy quantifiers of just the same sort (p. 258).

Suppose we agree. Then we can understand what the universal generalization

of any formula says. Moreover, as long as we count ‘�’ as a logical operator,

the universal generalization of a formula makes a purely logical claim: a for-

mula’s universal generalization deploys no non-logical vocabulary at all. If it is

true, then its truth is independent of the interpretation of any vocabulary other

than the quantifiers, ‘�’, the connectives, and ‘=’. It captures, it would seem,

some general, structural aspect of modal reality, so long as ‘�’ is interpreted to

express metaphysical necessity and the quantifiers are interpreted as absolutely

unrestricted.11

Williamson concludes that this makes it a good candidate for a logical truth

concerning metaphysical modality. And, he suggests, this status should be re-

flected back onto the formulae of QML whose universal generalization it is: each

of those formulae should also be reckoned logical truths concerning metaphysical

modality. A formula is metaphysically universal iff its universal generalization

is true.

10See pp. 95, 258.
11I will take the provisos concerning the interpretation of ‘�’ and the absence of restrictions

on quantifiers to be understood in what follows.
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The class of metaphysically universal formulae MU is Williamson’s proposed

candidate for the class of logical truths concerning metaphysical modality (pp.

92-4, 131-2). This completes the first step in Williamson’s specification of a

class of intended model structures: we have specified the class of logical truths.

The second step is now straightforward. The logic of a model structure is

the set of formulae true in every model of that structure. Such a logic L is

sound for MU iff L is a subset of MU ; L is complete for MU iff MU is a

subset of L (95). Williamson proposes that an inhabited model structure is

intended iff it is sound and complete for MU , i.e., its logic contains exactly the

metaphysically universal formulae. This, then, is how Williamson suggests that

we bring the tools of modal logic to bear on modal metaphysics. In particular, he

immediately deploys these tools to shed light on the dispute between necessitism

and contingentism.

3 Necessitism, Contingentism, and MU

Recall that necessitism holds that, necessarily, everything is necessarily some-

thing. Standard forms of contingentism are motivated in part by the implausi-

bility of certain consequences of this claim. They are motivated, for instance, by

the implausibility of the idea that, necessarily, any volcano in Vermont is nec-

essarily something, hence actually something. Standard forms of contingentism

must for this reason hold that the Barcan Formula

BF (♦(∃x)φ⇒ (∃x)♦φ)

can have false instances on an intended interpretation. Replace the schematic

sentence letter φ in BF with a formula Fx to yield

(1) (♦(∃x)Fx⇒ (∃x)♦Fx)

where we intend that ‘F ’ be interpreted as expressing the property of actually

being nothing. Then its antecedent is true according to the standard forms of

contingentism, since it is possible that there be something – e.g., a volcano –

that is such that, actually, nothing is identical to it. But its consequent is false,

since everything is, of course, necessarily actually identical to something. So, a

standard contingentist must deny that (1) is metaphysically universal.

Williamson argues that, if there is an inhabited structure that is sound and

complete for MU , then that structure also validates BF (pp. 134-5). The argu-
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ment relies on a technical result connecting BF to necessitism. Call a structure

〈W,R,w,D〉 non-increasing iff D(w∗) ⊆ D(w) for all w∗ accessible from w. In-

tuitively, a non-increasing structure is one in which every possible object is a

member of the domain of the actual world. If, for instance, a certain possible

volcano is a member of the domain of a world in a non-increasing structure,

then it is also a member of the domain of the actual world of that structure.

The technical result (well known, but proved on pp. 124-5) is that any inhab-

ited structure that is non-increasing validates BF. Williamson shows that, if an

inhabited structure is sound and complete for MU , then it is non-increasing.

Consider the open formula (∃y)x = y. It is metaphysically universal, since its

universal generalization, (∀x)(∃y)x = y, is true. If an inhabited structure vali-

dates this open formula, then, in every model, every member d∗ of the domain

of any world accessible from the actual world w is such that the assignment of

d∗ to x satisfies the formula. But d∗ satisfies the formula only if it is a member

of D(w). Thus, every member d∗ of the domain of any world accessible from w

is also a member of w. So, the structure is non-increasing and satisfies BF.

This is bad news for standard contingentists, who reject BF. If, as Williamson

urges, an inhabited structure is intended only if it is sound and complete for

MU , then any intended structure validates BF, and hence all instances of BF

are metaphysically universal. But closed metaphysically universal formulae are

clearly true.12 Thus, if there is an intended inhabited structure, then standard

contingentism is false. Standard contingentists, it appears, must reject the idea

that there is an intended inhabited structure.

4 Intended Structures for Contingentists

Appearances are misleading, however, for the contingentist has other alterna-

tives available to her. For instance, she may locate the fault in the definition

of validity on a structure; if she says that a formula φ is valid on a structure iff

it is true in every model of that structure on all assignments of elements of the

domain of the actual world to variables, then the argument does not get off the

ground (p. 136).13

12Keep in mind that the language we are working with right now is assumed to be free
of individual constants. When constants are introduced, there is reason to think that some
closed metaphysically universal formulae are false. We will revisit this issue below.

13Williamson argues that a similar restriction needs to be imposed on the evaluation of for-
mulae containing individual constants. Since the language under study contains no individual

8



Williamson contends that minor alterations of this sort to the semantics are

“unmotivated ad hoc complications” (p. 136). From a standard contingentist

point of view, of course, the complications are not unmotivated: they are mo-

tivated, contends the standard contingentist, by the need to specify the class

of intended structures, together with whatever motivation he thinks supports

contingentism. This sort of contingentist response, however, amounts to little

more than insisting on the co-validity of modus ponens and modus tollens. So,

let’s set this response aside in favor of something more interesting and more

powerful.

An alternative contingentist response locates the problem in the fact that

the semantic clause de-relativizing the truth of an open formula to assignments

a. According to that de-relativization, φ is true (at a world in a model) iff φ it

is true relative to all assignments a which map x to an object from the domain

of any world whatsoever. One proposal would be to amend that clause so that

the truth condition for an open formula is identical to the truth condition for its

closure: any formula is true at a world w iff it is true at w on every assignment of

members of D(w) to variables.14 Again, Williamson’s argument would not get

off the ground. This proposal is very far from ad hoc and unmotivated. When

Kripke introduced the model-theoretic setting in which we are working, he faced

the problem that BF and its converse appear to be implied by standard modal

and quantificational principles. He solved this problem by giving open formulae

the generality interpretation, which is exactly the interpretation offered by the

proposal at hand [Kripke, 1963, pp. 68-9].

Still, I think it’s more natural to leave the model-theoretic semantics alone,

and revise the criterion for logical truth. The generality interpretation, after all,

is just one of the permissible interpretations of open formulae. Moreover, open

formulae seem, on their face, to be unattractive candidates for logical truths.

As Williamson notes in another context, an open formula “... is unsuitable

for independent use in a speech act” (p. 346), presumably because, absent

constants, this additional restriction is unnecessary in the present context. I will revisit issues
concerning individual constants below.

14This emendation of the de-relativization of truth to assignments would not materially
affect results concerning the truth or validity of formulae containing the open formula, since
the basic notion is truth relative to a world and an assignment, and the definition of that
notion is unaltered. To be sure, one cannot summarize the upshot of an argument to the
effect that an open formula is not true at a world on every assignment by saying that the
formula is “not true” at the world. In general, however, that particular way of summing
things up is not necessary.
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some further interpretation, it makes no claim of truth or falsity. We can, in

the formal semantics, stipulatively define a notion of truth (at a world in a

model) for an open formula that is assignment-independent. But we should

recognize that stipulation for what it is: a matter of defining things so that

(hopefully) our proofs aren’t as wordy, rather than an attempt to capture a pre-

theoretically compelling idea. The de-relativization of truth for formulae is more

a matter of formal bookkeeping than a deep metaphysical insight. Because open

sentences are unattractive candidates for truths, they are, likewise, unattractive

candidates for logical truths. Otherwise, Williamson’s specification of the class

of logical truths is very attractive. So, let’s use that specification but exclude the

open formulae. Say that a formula is metaphysically unlimited iff it is closed and

metaphysically universal. Call the class of metaphysically unlimited formulae

MU∗. An inhabited structure is sound for MU∗ iff the sentences (i.e., closed

formulae) it validates are all in MU∗. It is complete for MU∗ iff it validates

every sentence in MU∗. An inhabited structure is intended iff it is sound and

complete for MU∗. This is a criterion for logical truth and a corresponding

criterion for an intended inhabited structure that standard contingentists can

easily endorse.

If MU∗ is the class of logical truths concerning metaphysical modality, then

Williamson’s argument that standard contingentism must reject the idea that

there is an intended inhabited structure is unsound. In particular, (∃y)x = y is

not metaphysically unlimited, so there is no reason to think that any intended

inhabited structure should validate it. Moreover, MU∗ is at least as plausible

and natural a candidate for the class of logical truths as MU . I have argued

that, in fact, it is more plausible and natural because it eschews the unattrac-

tive assumption that open formulae are truths. Suppose, however, that I am

wrong about that. We would still lack any support for favoring the claim that

MU is the class of logical truths concerning the metaphysics of modality over

the equally plausible and natural claim that MU∗ enjoys that status instead.

Without such support, Williamson’s argument is incomplete.

5 Williamson’s Construction

Williamson provides a construction of an inhabited model structure, and shows

that, if necessitism is true, it meets the necessitist criterion for an intended
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structure: its logic is sound and complete for MU (pp. 102ff., 140-2). Can the

contingentist do the same with respect to the neutral criterion for an intended

structure, which requires that its logic be sound and complete for MU∗? Again,

the news for contingentism is good: if Williamson’s argument shows that the

inhabited structure he describes is sound and complete for MU , then a similar

construction and argument will establish a similar result for the contingentist.

Williamson’s construction assumes that the universe of propositions form a

boolean algebra under the operations of infinitary conjunction (Π), infinitary

disjunction (Σ), and negation (∼). This boolean algebra contains exactly one

contradiction, 0, and exactly one tautology, 1. The algebra is partially ordered

by the relation ≤, where p ≤ q iff Π(p, q) = p. Intuitively, ≤ is the entailment

relation. Williamson assumes that this boolean algebra is complete, in that every

set of propositions has a ≤-least upper bound and a ≤-greatest lower bound.

Intuitively, the ≤-least upper bound of a set of propositions is the strongest

proposition entailed by each member of the set, and its greatest lower bound

is the weakest proposition that entails each of them. So, the l.u.b. will be the

(perhaps infinitary) disjunction of propositions in the set, and the g.l.b. wil be

their (perhaps infinitary) conjunction. A proposition is an atom just in case it

is not the contradiction, but is otherwise strong enough to to entail, for every

proposition p, either p or ∼ p. Thus, an atom is consistent because it is not 0,

and it is maximal because it entails or excludes every proposition. Williamson

assumes that the boolean algebra of propositions is atomic in the sense that

every proposition other than the contradiction is entailed by some atom.

The construction so far leaves out modality. Modality is handled by assum-

ing that there is an operation L of necessitation on the propositions. Intuitively,

for instance, if p is the proposition that Socrates is not a world war, then Lp is

the proposition that, necessarily, Socrates is not a world war.15 L is assumed

15This informal explanation of L is crucial for the adequacy of Williamson’s construction.
The two-element boolean algebra containing only 0 and 1 is a complete, atomic boolean
algebra. None of Williamson’s other assumptions excludes the hypothesis that there are only
two propositions, The True and The False, and thus that there is only one possible world in
the intended structure. The informal explanation excludes this hypothesis about the universe
of propositions because it is obvious that, though the proposition that Shaquille O’Neal is 3
inches taller than Lebron James is true, its necessitation is false. Thus, no two-proposition
universe satisfies the assumption that L is necessitation, and so no one-world structure is
intended. For this reason, the variant approach described on p. 104, on which the operation
L is defined in the obvious way in terms of the boolean algebra, is not viable, unless we offer
further constraints on the universe of propositions. In general, Williamson’s construction of
an intended inhabited structure would benefit from a clearer articulation of the assumptions
concerning the universe of propositions on which it relies.
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to distribute over conjunctions: L(Π(S)) = Π({Ls|s ∈ S}). Given Williamson’s

assumptions, the atoms of the boolean algebra are good candidates for worlds

of the intended structure, since they are maximal, consistent sets. We may

think of the propositions entailed by an atom as those that are “true at” that

atom. The atom which entails only true propositions is thus a good candidate

for the actual world of the structure, since it is maximal, consistent, and entails

all and only the true propositions. We let an atom w∗ be accessible from an

atom w iff, for all propositions p, if w entails Lp, then w∗ entails p. Intuitively,

the worlds accessible from w verify all of the propositions that w “says” are

necessary. Equivalently, all propositions true at a world accessible from w are

“said” by w to be possible.16

The construction so far leaves out quantification. This is handled by adding

a domain function. We are assuming necessitism, so the domain function is

constant, mapping each atom of the boolean algebra to a set D, which we are to

“... temporarily pretend is the intended domain of the first-order quantifiers”

(p. 140).17 Williamson assumes that n-place predicates are interpreted by

propositional functions from Dn into the propositions. Suppose, for instance,

that we intuitively interpret the predicate ‘F ’ as expressing the property being

a world war. We can represent this by assigning to ‘F ’ the function which takes

any individual d to the proposition that d is a world war. Given an assignment a

of objects from the constant domain D of an intended structure, this interpreta-

tion of each of the n-place predicates as propositional functions nails down what

Williamson calls a “faithful interpretation” for each sentence of the language of

QML. The faithful interpretation of an atomic sentence Fx1, x2, ..., xn is the

value of the propositional function mapped to ‘F ’ by the interpretation at the

sequence 〈a(x1), a(x2), ..., a(xn)〉. The faithful interpretation of a conjunction is

the conjunction of the faithful interpretations of the conjuncts, and the faithful

interpretation of the negation and necessitation of a formula is constrained to

be the negation and necessitation, respectively, of the faithful interpretation of

the formula.

This leaves only the specification of the notion of a “faithful interpretation”

of the universal generalization of a formula. One might expect at this point for

Williamson to add a “generalization” operation on propositions, which somehow

16Thanks are due to Paul Hovda for information and discussion about boolean algebras.
17We have to pretend because, as Williamson notes (pp. 139-40), there is no universal set.

Thus, for any set, our unrestricted quantifiers range over something not in the set.
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takes one, for instance, from the proposition that Socrates is a world war to the

proposition that everything is a world war. This is not what he does. Instead,

the faithful interpretation of a universal generalization (∀x)φ on a is defined

to be the (perhaps infinitary) conjunction of the interpretations of φ on any

x-variant of a that assigns a member of D to x. So, for instance, if the interpre-

tation maps ‘F ’ to a function from any individual in D to the proposition that

that individual is a world war, then the corresponding faithful interpretation of

(∀x)Fx on a is the conjunction of the propositions that Socrates is a world war,

that Plato is a world war, etc., for each individual in D.

Here, for convenient reference, is the recursive definition of a faithful inter-

pretation of a formula relative to an interpretation I of predicate letters and an

assignment a of members of D to the variables. We assume that I is a function

from n-place predicates to n-ary propositional functions, and we will denote the

faithful interpretation relative to I and a as Ia.

1. Ia(Fx1, x2, ..., xn) = I(F )(〈a(x1), a(x2), ..., a(xn)〉).

2. Ia(x1 = x2) =

1 if a(x1) = a(x2); and

0 otherwise.

3. Ia(¬φ) =∼ Ia(φ).

4. Ia(φ ∧ ψ) = Π{Ia(φ), Ia(ψ)}.

5. Ia(∀x)φ = Π{Ia[x/d](φ)|d ∈ D}.

6. Ia(�φ) = L(Ia(φ)).

Williamson then claims that “... the universal generalization of [a formula]

A is true, and so A is metaphysically universal, if and only if Ia(A) is true for

every faithful interpretation I and assignment a” (p. 141). This is not true if we

impose no further constraints on D. Suppose D is a singleton {d}, and consider

the Heraclitean claim that all is one:

H (∀x)(∀y)x = y.

Every faithful interpretation on every assignment a is such that Ia interprets

(H) (which is its own universal generalization) as the tautologous proposition

1, i.e., the proposition that d is identical to d. So, of course it is true on every

faithful interpretation. And yet (H) is not metaphysically universal.
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What has gone wrong? The problem is that the proposed “faithful interpre-

tation” of quantificational sentences like (H) does not interpret them as quantifi-

cational propositions: the “faithful interpretation” of (H) is, in fact, consistent

with the obvious truth that there are at least two things. The proposition that

Williamson’s argument shows is MU is not the proposition we intend by (H). In

summary, the “faithful interpretation” of (H) is not an intended interpretation.

Williamson concedes (p. 141) that the interpretation of quantification as

conjunction does not appropriately capture the modes of presentation of uni-

versal claims. He argues that capturing modes of presentation is beyond the

purview of the logical and metaphysical investigation we are presently pursu-

ing. But the problem in this instance is not merely a matter of the interpretation

for (H) failing to express the right mode of presentation; rather, the problem is

that the proposed interpretation for the universal claim gets both the truth value

and the consequences of the sentence (on its intended interpretation) wrong.

Now, this objection to Williamson’s claim is not obviously fair, since it

depends on the assumption that the set we are pretending is the intended domain

of absolutely unrestricted quantification is a singleton. One would have to be

really good at pretending to play along with this assumption. I’m sure that I

am not capable of such a feat. Given that the set-theoretic background for the

semantics includes an axiom of infinity, it is plausible to think that D should

be constrained to be infinite. If we impose this constraint on Williamson’s

construction, then there is no danger of validating (H) and its ilk. One might,

nevertheless, have two remaining reservations. First, adding the constraint on

D seems on its face a bit of a kludge. It’s a prima facie ad hoc constraint that

nevertheless manages to prevent trouble. The second, related reservation is that

adding this constraint does not really go to the root of the problem. The root

of the problem is that the proposed interpretation of quantificational claims

makes no contact at all with the logical structure of ostensibly quantificational

propositions on which Williamson’s construction is based. Thus, the claims that

Williamson’s argument shows belong to MU are not the claims we intended to

express using the quantifiers of QML. This point remains even if every inhabited

structure of the sort that Williamson describes that has an infinite domain

happens to validate exactly the metaphysically universal formulae on a “faithful

interpretation.”
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6 A Contingentist Construction

So, we should be unsure, I think, whether Williamson’s construction really works

as advertised. Suppose, however, that it does. Then it is easy for the stan-

dard contingentist to follow the trail that Williamson has blazed. Assume with

Williamson that the propositions form a complete, atomic boolean algebra. Let

the set of worlds W , the actual world w, and the accessibility relation R be

defined just as Williamson does. We add a domain function D, constrained

so that D(w∗) is infinite for all w∗ ∈ W . Since we are assuming standard

contingentism, we may require that D be such that the inhabited structure is

neither non-increasing nor non-decreasing.18 We let assignments map vari-

ables to any member of the union of the sets D(w∗) for w∗ ∈ W . Let C(p, q)

abbreviate ∼ Π(p,∼ q); intuitively, C(p, q) is the material conditional whose

antecedent is the proposition p and whose consequent is the proposition q. Let

Iw
∗

a (φ) = Π{Ia[x/d](φ)|d ∈ D(w∗)}; Iw∗

a (φ) is the (perhaps infinitary) conjunc-

tion of the interpretations of φ on the x-variants of a that assign a member of

D(w∗) to x. Replace clause (5) of the definition of Ia above with

5. Ia((∀x)φ) = Π{C(w∗, Iw
∗

a (φ))|w∗ ∈W}.

It is then easy to argue, along essentially exactly the same lines as Williamson’s

argument, that the universal generalization of a sentence (i.e., a closed formula)

φ is true, and so φ is metaphysically unlimited, if and only if Ia(A) is true for

every faithful interpretation I and assignment a.19 If Williamson’s argument

succeeds in showing that an inhabited structure of the sort he describes (with

the additional constraint needed to exclude (H) and its fellow travelers) is sound

and complete for MU , then this argument succeeds in showing that the inhab-

18A structure 〈W,R,w,D〉 non-decreasing iff D(w∗) ⊇ D(w) for all w∗ accessible from w.
19Recall that I is a function from n-place predicates to n-ary propositional functions. Any

such I determines a model MI = 〈W,R,w,D, VI〉, where 〈d1, d2, ..., dn〉 ∈ VI(F )(w) iff w ≤
I(F )(〈d1, d2, ..., dn〉). The key lemma says that for any basic interpretation I, formula φ,
assignment a, and world w, MI , w, a � φ iff w ≤ Ia(φ). This is proved by induction on
the complexity of the formula φ. The cases of atomic formulae, conjunctions, negations, and
necessitations are handled by Williamson’s argument at p. 106n. Suppose, then, that we are
given a formula (∀x)ψ. Ia((∀x)ψ) is the conjunction of conditionals C(v,Π{Ia[x/d](ψ)|d ∈
D(v)}) for v ∈ W . w ≤ ∼ v for each atom v other than w, so it’s enough to show that,
MI , w, a � (∀x)ψ iff, for all d ∈ D(w), w ≤ Ia[x/d](ψ). Now, MI , w, a � (∀x)ψ iff, for
all d ∈ D(w), MI , w, a[x/d] � ψ. But the inductive hypothesis yields that, for all d ∈
D(w),MI , w, a[x/d] � ψ iff w ≤ Ia[x/d](ψ). QED. On the basis of this lemma, an adaptation
of the argument on p. 107 will show that the model structure is sound and complete for
MU∗ so long as a similar adaptation of that argument shows that Williamson’s construction
is sound and complete for MU .
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ited structure I have described is sound and complete for MU∗. In short, if

Williamson shows that there is an intended inhabited structure by the necessi-

tist’s lights, then his argument also, suitably amended, shows that there is an

intended inhabited structure by the standard contingentist’s lights. Contrary

to Williamson’s claim, contingentists need take no more jaundiced a view of the

import of Kripke-style models than necessitists.

Williamson acknowledges that contingentists might manage to isolate a class

of intended inhabited structures (p. 137). He argues, however, that the stan-

dard contingentist still cannot take the model theory in a fully realistic spirit.

According to standard contingentism, there might have been things that are,

actually, identical to nothing. In an intended inhabited structure, such things

are represented by elements of the domain of a non-actual world in the structure

that are not also elements of the domain of the actual world of the structure.

Each representative, of course, is actually identical to something. So, those

denizens of non-actual domains are actual things that go proxy for things that

might have been something but are actually nothing. Call something merely

possible just in case it is possibly something, but actually nothing. Nothing

is merely possible.20 Thus, the standard contingentist is committed to the

idea that some elements of the inhabited structure go proxy for merely possible

things without there really being any merely possible things. In this sense, the

standard contingentist holds that no model of the intended inhabited structure

is in every respect an accurate representation of modal reality.

The charge is correct. Not every aspect of any model of an intended structure

corresponds to an aspect of modal reality if standard contingentism is true. We

cannot read features of modal reality off the features shared by all models of an

intended structure.21 It seems, however, that the necessitist is in the same boat.

The reason we have to pretend that, in a necessitist intended structure, D is the

intended domain of quantification, is that, as Williamson notes, there is no set of

all objects. Thus, any model of any intended Kripke-style structure has a feature

that does not accurately reflect modal reality: the model contains only set-many

individuals, but there are really more than set-many individuals. Williamson

conjectures that we can find some higher-order analogue of the construction

of an intended inhabited structure for necessitists, where the domain D (and,

20Williamson agrees; see pp. 22-3.
21It should be said, however, that this point is independent of Williamson’s argument that

standard contingentism must reject the idea that there is an intended inhabited structure.
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for that matter, the boolean algebra of propositions) need not be set-sized.22

Similarly, the contingentist might hope for some higher-order construction which

appeals to an algebraic structure of relations to serve as interpretations of open

formulae, as opposed to a Tarski-style satisfaction semantics.23 Suppose these

hopes are realized. In neither case can either the necessitist or the contingentist

take every aspect of the Kripke-style intended inhabited structure accurately to

characterize the features of modal reality.

7 Adding Individual Constants

There is, however, one final challenge for the contingentist that we have not yet

discussed. We have been discussing a formal language for QML that lacks indi-

vidual constants. If we allow individual constants, then, it seems, Williamson’s

argument that a contingentist cannot accept that there is an intended inhabited

structure can be revived. The most natural semantic clause for constants treats

them analogously to variables: an interpretation may specify any element of the

domain of any world as the interpretation of an individual constant. Suppose

c is an individual constant, and consider the sentence (∃y)c = y. It is meta-

physically universal, since its universal generalization, (∀x)(∃y)x = y, is true.

Moreover, it is metaphysically unlimited, since it is both closed and metaphysi-

cally universal. If an inhabited structure validates this sentence, then, in every

model, every member d∗ of the domain of any world accessible from the actual

world w is such that the sentence is true when d∗ is assigned as the referent of

c. But the sentence is true when c refers to d∗ only if d∗ is a member of D(w).

Thus, every member d∗ of the domain of any world accessible from w is also a

member of w. So, the structure is non-increasing, and satisfies BF. Since the

formula is a member of MU∗, it would seem to follow that any structure sound

and complete for MU∗ validates BF. If this argument is sound, then the con-

tingentist must concede that there is no intended inhabited structure according

to her own criterion (p. 136).

There are a number of responses to this new, rehabilitated problem avail-

able to a contingentist. One thing she might do is impose a restriction on the

22Williamson sketches the outlines of a construction of this sort on p. 117 and notes some
potential pitfalls.

23I have in mind something along the lines of Bealer’s [1983] construction, though Bealer
proposes to define necessity rather than rely on a primitive necessitation relation.
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interpretation of c so that it must be assigned a referent from the domain of the

actual world of the inhabited structure. This is one of those measures charac-

terized by Williamson as “unmotivated ad hoc complications” (p. 136). I am

inclined to agree that, other things being equal, the restriction on the interpre-

tation of individual constants is unmotivated by contingentist lights. It would

make (∃y)c = y into a logical truth concerning the metaphysics of modality,

and it seems implausible to me, at least, that a contingentist should accept that

that is a logical truth.

Matters are not so clear, however, given a stipulation that Williamson makes

concerning the language we are treating. He contends that a language is “well-

designed for expressing good scientific theories [only if] the denotation of any

constant is one of the values over which variables of the same type range” (p.

131). He stipulates that the language we are considering is well-designed by

this standard. This stipulation is needed to ensure that the members of MU

(and, for that matter, MU∗) are all true, and so are appropriate candidates for

logical truth. Suppose our constant c had as its denotation something outside

the range of the quantified variables. As we have seen, (∃y)c = y is both

metaphysically universal and metaphysically unlimited; but it is true only if

the denotation of c is in the range of the quantifier ‘(∃y)’. According to the

contingentist, the (actual) range of individual quantified variables is represented

in an inhabited structure by the domain of the actual world of the structure.

Thus, the restriction of denotations of individual constants to the domain of the

actual world is required by the content of Williamson’s stipulation. Absent the

stipulation, the restriction is unmotivated; in the present context, however, the

restriction is motivated by the imposition of the stipulation.

I have shown that necessitism and standard contingentism can each offer

a well-motivated criterion for an inhabited structure to be intended. I have

argued, briefly, that the contingentist’s criterion is preferable on independent

grounds. We have reviewed Williamson’s argument that his construction meets

the necessitist’s criterion for an intended inhabited structure. I have contended

that, if that argument is sound, then a similar argument shows that a similar

construction will meet the contingentist’s criterion for an intended structure. I

conclude that Williamson is not correct to say that “necessitism has a theoretical

advantage over contingentism in giving a clearer, simpler, and more satisfying

account for quantified modal languages of the relation between truth in a model
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and truth” (p. 139). Necessitism and standard contingentism are, rather, on a

par in this respect: either both can give a very clear, very simple account of the

relation between truth in a model and truth, or neither can.

We should not let the critical character of my remarks obscure the extent of

Williamson’s achievements. Williamson offers a clear and plausible criterion for

an inhabited structure to be intended. This criterion offers a precise means for

bringing the power of the model theory of QML to bear on questions concerning

features of modal reality; see, for instance, pp. 95-7. My contingentist-friendly

criterion is a mere tweak. Williamson’s construction of an inhabited structure

that meets his criterion, if successful, adds further insights; see, for instance,

pp. 109-11. My proposed contingentist construction involves only a slight ad-

justment. His argument that contingentists must deny that there is an intended

structure poses an interesting challenge to contingentism. It is a testament to

the clarity, richness, and power of the book that meeting that challenge draws

so significantly on resources Williamson himself has provided.

Moreover, I have only discussed material covered in a single chapter. I

have focused almost exclusively on Williamson’s contention in Chapter 3 that

standard contingentists must regard Kripke-style possible worlds semantics with

a jaundiced eye. Each chapter of the book deserves extended scrutiny that

considerations of space prevent me from providing here. Williamson develops

and discusses the broadly logical case for necessitism with breathtaking erudition

and care. Here, then, I have done little more than scratch the surface of one

small part of a large, rich, and interesting book. I hope to have said enough

nonetheless to convince you that this book will reward careful study.24
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