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Abstract

Local adaptation is pervasive in forest trees, which are characterized by large effective population 
sizes spanning broad climatic gradients. In addition to having relatively contiguous populations, 
many species also form isolated populations along the rear edge of their range. These rear-edge 
populations may contain unique adaptive diversity reflecting a history of selection in marginal 
environments. Thus, discovering genomic regions conferring local adaptation in rear edge 
populations is a key priority for landscape genomics to ensure conservation of genetic resources 
under climate change. Here, we report on adaptive gene–environment associations in single 
nucleotide polymorphisms (SNPs) from 27 genes in the Populus flowering time gene network, 
analyzed on a range-wide collection of >1000 balsam poplar trees, including dense sampling of the 
southern range edge. We use a combined approach of local adaptation scans to identify candidate 
SNPs, followed by modeling the compositional turnover of adaptive SNPs along multivariate 
climate gradients using gradient forests (GF). Flowering time candidate genes contained extensive 
evidence of climate adaptation, namely outlier population structure and gene–environment 
associations, along with allele frequency divergence between the core and edge of the range. GF 
showed strong allele frequency turnover along gradients of elevation and diurnal and temperature 
variability, as well as threshold responses to summer temperature and precipitation, with turnover 
especially strong in edge populations that occur at high elevation but southerly latitudes. We 
discuss these results in light of how climate may disrupt locally adaptive gene–environment 
relationships, and suggest that rear edge populations hold climate-adaptive variants that should 
be targeted for conservation.

Subject area: Population structure and phylogeography; Molecular adaptation and selection
Keywords:  landscape genetics, local adaptation, range limits, rear edge, plant circadian clock

There is a growing awareness that the conservation of local adap-
tation in the face of climate change requires a comprehensive 

understanding of how evolutionary processes shape genetic diversity 
in different parts of a species’ range (Hampe and Petit 2005; Sexton 
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et al. 2009; Woolbright et al. 2014). In northern hemisphere temper-
ate or boreal biomes, populations along the southern or “rear edge” 
of species’ range are an emerging priority for landscape studies iden-
tifying genes that contribute to local adaptation (Hampe and Petit 
2005). For many species, the rear edge is closest to the estimated 
location of glacial refugia prior to postglacial range expansion (Petit 
et al. 2003), and is therefore predicted to contain genetic diversity 
not found elsewhere in the range (Lepais et  al. 2013). Rear edge 
populations are also predicted to occupy unique positions along 
abiotic and biotic environmental gradients compared to the rest of 
the species range, such as higher elevations, warmer, longer, or more 
variable growing seasons, or novel biotic interactions with other 
species in their communities (Woolbright et al. 2014). Thus, range 
edge populations may harbor unique adaptive alleles or genotypic 
combinations of alleles in response to these environments not found 
elsewhere in the range (Hoffmann and Sgrò 2011). Lastly, popula-
tions near range edges may grow in marginal habitats near the limits 
of physiological tolerance; thus there is a need to identify climate-
adapted diversity unique to these populations while they are still 
extant (Kawecki 2008; Hampe and Jump 2011).

Trees offer excellent study systems for using landscape genomic 
approaches to discover climate-adapted regions of the genome 
(Petit and Hampe 2006), and for identifying local populations or 
geographic regions with adaptive variants that could be utilized 
in conservation, restoration, and breeding efforts for biomass pro-
duction (Savolainen et  al. 2013; Evans et  al. 2014; Bragg et  al. 
2015; Holliday et al. 2016). Previous work in Populus has dem-
onstrated quantitative genetic clinal variation in phenology and 
growth traits along environmental gradients that determine grow-
ing season length (Dynesius and Jansson 2000; Keller et al. 2011b; 
Soolanayakanahally et  al. 2013b; McKown et  al. 2014). In par-
ticular, the timing of spring bud flush and late summer bud set—
traits that together coordinate the timing of growth and dormancy 
with the permissive growing season—possess strong heritability in 
Populus (Olson et al. 2013) and exhibit clinal variation with grow-
ing degree days and daylength under common garden conditions 
(Keller et  al. 2011b; Soolanayakanahally et  al. 2013a; McKown 
et al. 2014).

A variety of functional studies pioneered in Populus have given 
us a basic model for the genetic control of vegetative phenology 
(Böhlenius et al. 2006; Hsu et al. 2011; Brunner et al. 2014). These 
studies strongly implicate genes in the plant circadian clock and asso-
ciated flowering time pathway controlling tree phenology, principally 
genes responsible for photoperiod signaling (e.g., phytochromes 
and cryptochromes), circadian regulation of environmental signals 
(GIGANTEA, EARLY FLOWERING-3), and downstream signal 
integration via the CONSTANS/FLOWERING LOCUS T (CO/FT) 
regulon. Interactions among these genes and their responsiveness 
to external environmental cues control the timing of seasonal dor-
mancy onset and release that governs local adaptation to growing 
season length. Appreciable allelic variability in these genes has been 
found to segregate in natural stands of Populus, with some genes 
exhibiting elevated population structure, clines in allele frequencies 
with climate, and genotype–phenotype associations (Ma et al. 2010; 
Rohde et al. 2011; Keller et al. 2012; Evans et al. 2014; Wang et al. 
2014; Fitzpatrick and Keller 2015). These studies have provided 
some of the strongest support to date for identifying associations 
between environmental drivers of selection, the adaptive phenotypes 
responding to these environments, and the underlying genetic vari-
ants responsible for adaptation on the landscape (Sork et al. 2013; 
Rellstab et al. 2015).

Balsam poplar (Populus balsamifera L., Salicaceae) occurs in 
boreal forest ecosystems across North America. Balsam poplar’s 
huge geographic range spans broad variation in climate, and popu-
lations show strong ecophysiological divergence along latitudinal 
and climatic gradients (Soolanayakanahally et al. 2009; Keller et 
al. 2011b). Extensive sampling in the core of the range has been 
conducted, and association mapping and local adaptation scans in 
single nucleotide polymorphisms (SNPs) from genes in the flowering 
time pathway revealed significant latitudinal divergence (Keller et 
al. 2011a), associations with bud phenology (Olson et al. 2013) 
and strong SNP–environment covariation with climate (Keller et al. 
2012; Fitzpatrick and Keller 2015). However, rear edge populations 
are extensive in P. balsamifera, and their contributions to climate 
adaptation have not previously been investigated. Here, we report 
extensive new sampling of rear edge populations of P. balsamifera 
and analyze SNPs in the flowering time genetic pathway to address 
three key questions about the influence of range position on the gen-
etics of local adaptation: 1) Are rear edge populations ecologically 
and/or genetically separated from the range core in terms of the cli-
mate inhabited and inter-population genetic connectivity? 2) Do rear 
edge populations show evidence of gene–environment associations 
that are distinct from the range core? 3) What parts of the range 
will experience the greatest loss of local adaptation due to disrupted 
gene–environment associations under future climates?

Methods

Sampling
We analyzed 1021 balsam poplar individuals collected from across 
its range. This included 443 individuals reported previously in Keller 
et al. (2012), as well as 578 new individuals genotyped for this study. 
This new sampling specifically targeted the southern rear edge of 
the species range, which we define here as locations south of 52°N 
latitude in regions west of 100°W longitude, and south of the Great 
Lakes in regions east of 100°W longitude (Figure  1). Three indi-
viduals from the IVI population previously reported by Keller et al. 
(2012) were combined with the COT population, which is located in 
close proximity. The total number of populations combined across 
the current study and Keller et al. (2012) was 90, consisting of 55 
core populations and 35 rear edge populations. We also sampled 12 
individuals from closely related Populus spp. to serve as outgroups 
for determining the ancestral versus derived state of each SNP allele. 
These outgroup samples were Populus angustifolia (1), Populus del-
toides (1), Populus tremula (1), Populus tremuloides (1), and Populus 
trichocarpa (8).

DNA Extraction and SNP Genotyping
Germplasm collections from natural populations across the range 
were made during the winter months when trees were dormant 
(February–April). Vegetative cuttings of 6–10  cm were forced to 
flush under permissive temperatures in a greenhouse. Total genomic 
DNA was extracted from fresh leaf tissue using Qiagen 96 DNeasy 
kits, and DNA concentration estimated using the Qubit fluorometric 
BR assay.

Targeted SNP genotyping was carried out using the Sequenom 
iPlex genotyping system, as described previously in Keller et  al. 
(2012). Briefly, we used the published multiplexed SNP assays 
reported in Keller et al. (2012), which were derived from sequenc-
ing a range-wide panel of 24 P. balsamifera individuals for each of 
27 genes in the flowering time pathway and associated pathways 

2 Journal of Heredity, 2017, Vol. 00, No. 00

Downloaded from https://academic.oup.com/jhered/advance-article-abstract/doi/10.1093/jhered/esx098/4605251
by Jeanne Light user
on 15 December 2017



affecting vegetative and reproductive plant phenology (Keller et al. 
2011a). These genes encompass functional roles involved in response 
to environment such as red and blue light photoreceptors, core and 
peripheral components of the plant circadian clock, downstream 
targets of the clock involved in phenology such as florigens, vernal-
ization, and abscisic acid mediated response to stress and dormancy 

(Table  1, Supplementary Figure S1). In the current study, we col-
lected SNP data from 14 multiplex genotyping assays targeting a 
total of 381 SNPs. We filtered SNPs for those showing low genotyp-
ing success rate across individuals, deviation from Hardy–Weinberg 
equilibrium due to excess heterozygosity (likely due to paralogy), 
inconsistent detection of copy number variants (i.e., 1  bp indels), 

Figure 1. Range map showing sampling localities of 90 populations, with rear edge sites in red, and range core and northern edge sites in black. PCA shows 
range-wide differentiation in climate space based on 19 Bioclim variables plus elevation. PCA ordination of rear edge populations (red) from other range-wide 
populations (gray) along the first 3 principal components explained a cumulative 86% of the variance in climate among sites.
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and loci that were only polymorphic with inclusion of outgroup 
taxa. The resulting filtered dataset consisted of 291 biallelic SNP loci 
genotyped in 1021 P. balsamifera individuals. Genotypes were con-
verted to 012 format based on the number of derived alleles, using 
the outgroup taxa to determine the ancestral state at each locus by 
majority rule.

Statistical Analysis
Climate Associations with Range Position
We assessed climatic differences between core and edge populations 
using the Worldclim climate dataset at a resolution of 30 arc- seconds 
(~1 km) (Hijmans et al. 2005). We analyzed the 19 Bioclimatic 
(Bioclim) variables that use monthly means of temperature and pre-
cipitation to describe different biologically relevant climatic vari-
ables that take into account seasonality and extremes of climate. The 
19 Bioclim variables plus the elevation (m) of each collection site 
were used in a principal component analysis (PCA) to summarize the 
major axes of climate variability, using the FactomineR package (Lê 
et al. 2008) in R (R Core Team 2014). Mean differences in climate 
principal components (PCs) between core and rear edge populations 
were analyzed with a Mann–Whitney U test.

Population Structure
We examined population structure by calculating FST among popu-
lations using the diveRsity R package (Keenan et al. 2013), and by 
using discriminant analysis of principal components (DAPC) on the 
SNP genotype data using the adegenet R package (Jombart et  al. 
2010; Jombart and Ahmed 2011). We used K-means clustering to 
evaluate the number of groups consistent with the genotypes, and 
retained 150 PCs to be used as predictors in the discriminant analy-
sis. We calculated the loadings of each SNP on the discriminant axes 

to assess which loci contributed most strongly to defining the popu-
lation structure in the sample. We also evaluated genetic population 
structure with Dyer’s Population Graph approach to analyze the 
network topology and conditional genetic distances among popula-
tions at a landscape scale (Dyer and Nason 2004; Dyer 2015). We 
estimated Population Graphs for all SNPs combined using the R 
package popgraph.

Tests for Local Adaptation
We tested for the action of local selection in structuring SNPs in 
the flowering time pathway based on identifying loci with 1) excess 
population structure relative to neutral expectations (FST outliers), 
and 2)  testing for association between SNP genotypes and climate 
(gene–environment associations).

FST outliers were identified based on the F-model implemented 
in Bayescan (Foll and Gaggiotti 2008). We first analyzed divergence 
among the entire set of 90 populations to test for range-wide local 
adaptation. In addition, to investigate if different genes were targets of 
local selection in range core versus rear edge populations, we ran add-
itional models separately for each range subset (55 core populations, 
35 rear edge populations), for a total of 3 Bayescan runs. For each run, 
we set the prior odds of a locus being neutral versus under selection to 
10 000 based on recommendations from simulated data under a var-
iety of population structures, which suggest this stringent prior helps to 
minimize the false positive rate (Lotterhos and Whitlock 2014). In add-
ition, our SNP data are derived from a priori candidate genes, and so 
would be expected to harbor a larger proportion of selected SNPs than 
a random sample from the genomic background, suggesting that our 
prior odds of 10 000 may be conservative. Additional run parameters 
consisted of 20 pilot MCMC chains (5000 iterations each) followed by 
a burn-in period of 50 000 iterations and sample collection of 100 000 

Table 1. Genes involved in flowering time and associated pathways used for SNP genotyping

Gene Gene ID Transcript ID LG Annotation N SNPs

ABA insensitive-1B ABI1B Potri.006G224600 6 Abscisic acid 13
ABA insensitive-1D ABI1D Potri.018G060300 18 Abscisic acid 13
ABA insensitive-1D ABI3 Potri.002G252000 2 Abscisic acid 15
Casein kinase-2 subunit β 3.4 CKB3.4 Potri.002G139900 2 Peripheral circadian clock 11
Constans-1 CO1 Potri.017G107500 17 Downstream target 10
Constans-2 CO2 Potri.004G108300 4 Downstream target 10
Cryptochrome-1.1 CRY1.1 Potri.005G164700 5 Photoreceptor 10
Cryptochrome-1.2 CRY1.2 Potri.002G096900 2 Photoreceptor 14
Early bolting in short days EBS Potri.002G226000 2 Downstream target 4
Early flowering-3 ELF3 Potri.003G045000 3 Peripheral circadian clock 33
Frigida FRI Potri.015G110100 15 Vernalization 7
Gigantea-2 GI2 Potri.002G064400 2 Peripheral circadian clock 19
Gigantea-5 GI5 Potri.005G196700 5 Peripheral circadian clock 22
Heme oxygenase-1.1 HY1.1 Potri.006G069700 6 Photoreceptor 9
Heme oxygenase-1.2 HY1.2 Potri.018G131700 18 Photoreceptor 17
Heme oxygenase-2.1 HY2.1 Potri.009G048000 9 Photoreceptor 11
Heme oxygenase-2.2 HY2.2 Potri.001G253700 1 Photoreceptor 6
Leafy LFY Potri.015G106900 15 Downstream target 16
Phytochome-A PHYA Potri.013G000300 13 Photoreceptor 5
Phytochome-B1 PHYB1 Potri.008G105200 8 Photoreceptor 6
Phytochome-B2 PHYB2 Potri.010G145900 10 Photoreceptor 8
Phytochome interacting factor-3 PIF3 Potri.013G001300 13 Photoreceptor 8
Flowering locus T-1 PtFT1 Potri.008G077700 8 Downstream target 4
Terminal flowering-1.1 TFL1.1 Potri.009G165100 9 Downstream target 2
Timing of cab-1 TOC1 Potri.015G061900 15 Central circadian clock 11
ZEITLUPE-1.1 ZTL1.1 Potri.018G090800 18 Photoreceptor 2
ZEITLUPE-2.9 ZTL2.9 Potri.006G166300 6 Photoreceptor 4
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iterations with a thinning interval of 10. Outlier loci for local adapta-
tion were identified as those showing evidence of excess population dif-
ferentiation (locus-specific α > 0) at a false discovery rate (FDR) of 0.1.

We tested for SNP–climate associations indicative of local 
adaptation using the latent factor mixed model (LFMM) approach 
(Frichot et al. 2013). We used the first 3 axes from the PCA of the 
Bioclim data as predictors to test for associations between SNPs 
and climate. To control for population demography, we ran 10 rep-
licates of LFMM for each of a range of latent factors from K = 2 
to 10 (Frichot et al. 2013). Each replicate consisted of a burn-in 
of 10 000 iterations followed by data collection over 50 000 itera-
tions. Corrected P-values were calculated by combining z-scores 
across the 10 replicates per K and dividing by the genomic inflation 
factor, as described by Frichot et  al. (2013). The number of la-
tent factors was chosen based on evaluating the genomic inflation 
factor that resulted in an unbiased P-value distribution (Frichot 
et  al. 2013), and also by comparing choice of K to results from 
genotypic clustering using fastStructure (Raj et  al. 2014). This 
resulted in K = 5 latent factors for the range-wide sample, K = 5 for 
the range core, and K = 1 for the rear edge. Outlier loci in LFMM 
were determined based on an FDR of 0.1.

We compared evidence for excess population structure and gene–
environment association from Bayescan and LFMM to that obtained 
by Bayenv2, which uses a population matrix (Ω) proportional to 
pairwise FST to control for covariance in allele frequencies when test-
ing SNP-wise local adaptation (Günther and Coop 2013). Because 
we don’t have an a priori neutral set of SNPs, we estimated Ω using 
all SNPs. We used the first 3 climate PCs as predictors to test for 
gene–environment association, as in LFMM. We ran 105 iterations 
of the mcmc chain and compared Ω at intervals of 5000 steps. We 
found these to be highly congruent, and kept the final Ω matrix at 
the end of the 105 steps for further analysis. We then ran 3 replicate 
runs of Bayenv2 for 105 iterations of the mcmc chain and averaged 
outputs over runs for each SNP. Because Bayenv2 does not perform 
tests of significance, we ranked SNPs by their estimated population 
structure (XTX, similar to FST) and gene–environment association 
(Bayes factors) and retained SNPs in the top 5% quantile.

Landscape Genomics of Adaptive Gene–Environment 
Associations
To map the spatial turnover of adaptive variants on the landscape, we 
used the multivariate approach of gradient forest (GF) as described 
in Fitzpatrick and Keller (2015). Briefly, GF (Ellis et al. 2012) is an 
extension of the random forest machine-learning algorithm that 
models change in SNP allele frequencies across sites using nonlinear 
functions of environmental predictors (i.e., climate gradients). Being 
both nonlinear and multivariate, GF accommodates many of the bio-
logical complexities of clinal selection on allele frequencies that cur-
rent methods in gene–environment association tests do not (Rellstab 
et al. 2015), including threshold responses to environmental gradi-
ents and simultaneous modeling of multiple, correlated predictor 
variables (Fitzpatrick and Keller 2015).

We used GF to analyze changes in derived allele frequency of 
flowering time SNPs along gradients of contemporary climate using 
the Bioclim variables. To minimize effects of strongly autocorrelated 
predictors, we reduced the climate dataset to 6 Bioclim variables that 
were minimally correlated (<0.75) with each other: bio2 (mean di-
urnal range), bio5 (maximum temperature of the warmest month), 
bio6 (minimum temperature of the coldest month), bio18 (summer 
precipitation), bio19 (winter precipitation), elevation (m), as well as 
latitude and longitude to account for geographic effects.

We restricted our GF analyses to SNPs that were polymorphic in 
at least 5 populations, using 500 regression trees per SNP. We used 
default values for the number of predictor variables randomly sam-
pled as candidates at each split (2 in this case) and for the proportion 
of samples used for training (~0.63) and testing (~0.37) each tree. 
To evaluate where adaptive SNP–environment associations would 
become most disrupted under near-term climate change scenarios, 
we calculated an average “adaptive offset” measure by projecting 
the GF models to multiple scenarios of future climate for year 2050 
based on 32 different Earth system models and one representative 
concentration pathway (RCP 8.5, a high-range emissions scenario 
consistent with current trajectories). This time period is short enough 
into the future that dispersal is unlikely to be a mitigating factor in 
predicting population response; therefore, a change in the position 
of a given locality along the SNP–environment turnover function 
provides a measure of the potential disruption of local adaptation 
(Fitzpatrick and Keller 2015). We interpret adaptive offset as a SNP-
level prediction of future climate-stress due to loss of local adapta-
tion. Future climate scenarios were downloaded from the CCAFS 
climate data center (http://www.ccafs-climate.org/).

Results

Climate Differences between Core and Rear Edge 
Populations
The 1021 individuals sampled covered a broad geographical and 
climatic range of environments. Collections ranged from 39.22°N 
to 69.10°N latitude (Figure 1), and spanned mean annual tempera-
tures of −10.4 °C (COT and IVI) to 9.1 °C (LSM). PCA partitioned 
populations along PC1 (51% of variance) that described an axis 
of warm, wet sites with low seasonality (high PC1 scores) versus 
cooler, drier sites with greater seasonality (low PC1 scores). The PC2 
axis explained 22% of the climate variance, and described an axis 
of high elevation warm sites with a large diurnal range (difference 
between daily maximum and minimum temperatures) versus low 
elevation cool sites with a low diurnal range. Populations along the 
southern range edge had significantly higher values of both PC1 and 
PC2 (Mann–Whitney U test, P < 0.0001) (Figure 1). Thus, rear edge 
populations of P. balsamifera differ from the range core by occupy-
ing climates characterized by greater temporal variability and high 
maximum temperatures (bio5, bio10), with associated high variance 
in diurnal temperatures (bio2, bio3). Interestingly, a third climate di-
mension (PC3; 14%) separated rear edge populations into 2 groups: 
a western mountain group in Colorado, Wyoming, and Alberta char-
acterized by higher elevations and higher monthly and seasonal tem-
perature variability (bio2, bio3), and a second group near the Great 
Lakes characterized by warmer growing season temperatures (bio5, 
bio8, bio10).

Population Genetic Structure and Connectivity
Population FST averaged across all loci was 0.1070 (95% confidence 
interval (CI) = 0.0970–0.1149), and varied widely among population 
pairs (Supplementary File 1). The network topology of genetic structure 
across the landscape showed distinct patterns of connectivity between 
rear edge populations relative to the range core (Figure 2). Conditional 
genetic covariances among populations based on the SNP data showed 
that rear edge populations in the western mountains (RMP, JKH, SSR, 
MSG, CYH) formed an internally connected network, but with rela-
tively few connections to populations in the core of the range. The lat-
ter consisted of geographically disparate edge–core connections, such 
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as between RMP (Colorado) and LON (Ontario), or between MSG 
(Wyoming) and USDA populations (Great Lakes region), probably a 
reflection of historical gene flow during postglacial expansion (Keller 
et al. 2010). Elsewhere in the rear edge, USDA populations around the 
Great Lakes showed a high degree of genetic connectivity with each other 
and populations in southern Ontario and New England, but relatively 
low connectivity with nearby core populations in northern Ontario, 
Manitoba, or Saskatchewan (Figure 2). Within the core of the range, 
populations showed high connectivity along a southeast to northwest 
trending axis from New England to NW Canada and Alaska. The excep-
tion to the broadly connected range core was the group of populations in 
far eastern Quebec and Atlantic Canada, which formed a separate rela-
tively isolated network of populations, consistent with previous studies 
that identify this region as a distinct subpopulation (Keller et al. 2010).

The genetic isolation of rear edge populations compared 
to the range core and Atlantic Canada was also evident in the 
DAPC analysis (Figure  3). K means clustering of SNP geno-
types identified 3 main groups, which DAPC separated into 
individuals from the western mountains (along DA-1), and 
between Atlantic Canada and the rest of the range core (along 
DA-2). The genes containing SNPs that contributed most 
strongly to the separation of these groups primarily involved 
2 circadian genes upstream of the CO/FT regulon: namely, 
EARLY FLOWERING-3 (ELF3) which loaded strongly on 
DA-1 and distinguished rear edge populations in the western 
mountains, and 1 of the 2 GIGANTEA paralogs (GI5) which 
loaded strongly on DA-2, distinguishing the range core from 
Atlantic Canada populations.

Figure 3. DAPC based on 291 flowering time SNPs across 1021 individuals. Shown are the biplot of individual coordinates along the first 2 discriminant axes 
(1: Atlantic Canada populations; 2: Western Mountain populations; and 3: Range Core populations), and loadings of candidate gene SNPs on the first 2 DA axes.

Figure 2. Population graph covariance network based on 291 SNPs in the flowering time pathway. Lines connecting populations reflect shared covariance in 
allele frequencies, conditional on other connections between populations in the network.
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Local Adaptation in Rear Edge Versus Range Core 
Populations
Range-wide local adaptation was evident in the Bayescan ana-
lysis as elevated population structure (FST) for 13 SNPs, primarily 
in the ELF3 (N = 7) and GI5 genes (N = 5 SNPs; Supplementary 
Figure S2), both of which are part of the peripheral circadian clock 
(Supplementary Figure S1). The GI5 SNP 5271 was also in the top 
5% of XTX from Bayenv2 (Supplementary File 2). One SNP in pop-
lar FLOWERING LOCUS T1 (PtFT1) also showed evidence for 
local adaptation in the range-wide sample.

Interestingly, the targets of local adaptation changed dra-
matically when analyzing range core and edge populations 
separately (Figure  4). Within the range core, there was still 
abundant evidence for local adaptation for SNPs in GI5 but 
not in ELF3, while the rear edge showed no SNPs with elevated 
population structure (Figure  4). This suggests that allele fre-
quency divergence in ELF3 in the range-wide sample is primar-
ily aligned between rear edge and core portions of the range, 
and not within local populations within each region, consistent 
with results from DAPC.

Tests of gene–environment associations in the range-wide sam-
ple using LFMM also strongly supported SNPs in GI5 and ELF3 
as under climate-driven selection (Table 2). Significant associations 
in ELF3 (N = 6 SNPs) were along a gradient of elevation and diur-
nal temperature variability (PC2), whereas significant associations 
in GI5 (N = 7 SNPs) were associated with both PC2 and differences 
in overall temperature, precipitation, and their seasonality (PC1). 

Other genes showing significant range-wide association with PC1 
included ABi1B (1 SNP), CRY1.1 (3 SNPs), EBS (1 SNP), and HY2.1 
(2 SNPs); whereas significant association with PC2 was found for 
ABi3 (2 SNPs), CKB3.4 (2 SNPs), CRY1.1 (1 SNP), HY2.2 (1 SNP), 
PHYB2 (1 SNP), PtFT1 (1 SNP), and ZTL2.9 (1 SNP). One SNP in 
HY2.1 also showed associated with climate PC3. Five SNPs in the 
genes GI5 and CRY1.1 that were significant in LFMM were also in 
the top 5% of Bayes factors from Bayenv2 (Table 2).

In contrast to the range-wide sample, gene–environment associa-
tions in the core-only were aligned exclusively with PC1 of the cli-
mate data (Table 2), in which many of the significant associations in 
the range core were also detected in the range-wide sample (9/14). 
Two SNPs in the genes ABi1D and CRY1.1 were also in the top 5% 
of Bayes factors from Bayenv2 (Table 2). The lack of gene–environ-
ment associations with PC2 among core-only samples points to adap-
tive divergence between core and edge populations in their response 
to diurnal climate variability, principally involving SNPs in ELF3 
(Table  2). Consistent with this idea, when edge populations were 
analyzed separately (edge-only), they showed relatively minimal local 
adaptation along PC1, but abundant local adaptation along PC2 
and PC3. Many of the associations with PC2 in the rear edge sample 
involved ELF3 SNPs (N = 11 SNPs), as well as heme oxygenase genes, 
HY1.2 (2 SNPs), HY2.1 (2 SNPs), and HY2.2 (1 SNP). Additionally, 
edge-only populations contained outliers for local adaptation along 
PC3, unlike the range-wide and core-only samples. Four SNPs in 
ELF3 were also in the top 5% of Bayes factors from Bayenv2, as was 
one SNP from the flowering time gene PtFT1 (Table 2).

Figure 4. Bayescan plot identifying candidate outliers based on 291 flowering time SNPs. Threshold log10 q values for a FDR of 0.1 are shown as vertical lines. 
SNPs are color-coded according to their functional annotation within the flowering time network.

Journal of Heredity, 2017, Vol. 00, No. 00 7

Downloaded from https://academic.oup.com/jhered/advance-article-abstract/doi/10.1093/jhered/esx098/4605251
by Jeanne Light user
on 15 December 2017



Landscape Modeling of Local Adaptation under 
Current and Future Climates
GF analysis showed 191 of the 262 SNPs that were polymorphic in 
at least 5 populations exhibited allele frequency turnover along envi-
ronmental gradients (R2 > 0; Supplementary File 3). The 30 SNPs 
that LFMM identified as significant outliers in the range-wide analy-
sis (Table 2) had a large portion of their allele frequency variation 
explained by the combined effects of climate, elevation, and geogra-
phy (latitude and longitude) in multivariate GF models (R2 per SNP: 
0.07–0.71, mean  =  0.41). Allele frequency turnover was especially 
strong along gradients of elevation, summer precipitation (bio18), 
maximum temperature (bio5), and mean diurnal temperature range 
(bio2) (Figure 5). Turnover along the portions of environmental gradi-
ents occupied by rear edge populations was prominent for higher ele-
vations with a large diurnal range (Figure 5). Functional annotations 
of genes exhibiting the strongest turnover included the peripheral cir-
cadian clock (8/22 SNPs with R2 > 0.5), followed by photoreceptors 
(7 SNPs), downstream targets (5 SNPs), and abscisic acid (2 SNPs).

We used GF to assess the potential for loss of local adaptation 
due to mismatches of climate-adaptive SNPs with future climate. 
We restricted this analysis to just those SNPs with strong consen-
sus for climate-driven local adaptation—that is, those significant in 
both Bayescan and LFMM selection scans, and in the top 5% of 
Bayes factors from Bayenv2 (Table 2). Four SNPs met these crite-
ria: ELF3_5376, GI5_1950, GI5_2405, and PtFT1_3044. For these 
4 SNPs, climate explained a large portion of the variance in allele 
frequencies in multivariate GF models (R2 per SNP  =  0.48–0.62). 
We compared the position of each population along allele frequency 
turnover functions for these 4 SNPs between current and future cli-
mate conditions to calculate the adaptive offset. Mapping this offset 
back onto the landscape revealed that most of the predicted loss 
of local adaptation between current and future climates is concen-
trated along the northern range margin in areas of the northwest 
such as Alaska and the Yukon, particularly for SNPs in GI5 and 
PtFT1 (Figure 6). ELF3 showed some evidence of adaptive offset in 
the southern part of the range, but this was of lesser magnitude com-
pared to offset of GI5 and PtFT1 SNPs in the north. Thus, despite 
the unique patterns of adaptive SNP variation found in rear edge 
populations, near-term climate change is not predicted to dramati-
cally shift populations along the steepest portions of the environ-
mental gradients in southern populations.

Discussion
Populations at the rear edge of a species geographic range may differ 
from the range core in the selective environments experienced, in 

Table 2. Candidate SNPs showing association with climate PCs in 
different range positions

Candidate SNP Range-wide  
(N = 1021)

Core-only  
(N = 734)

Edge-only  
(N = 290)

Climate PC1
ABi1B_2376 0.0034
ABi1D_1207 0.0022
ABi1D_1354 0.0018
CO1_576 0.0002
CRY1.1_974 0.0005 0.0001
CRY1.1_3004 0.0001 <0.0001
CRY1.1_3018 0.0033 0.0004
EBS_609 0.0004 0.0010
ELF3_5376 0.0022
GI5_33 0.0008 <0.0001
GI5_198 0.0047
GI5_1950 0.0005 0.0019
GI5_2405 ≤0.0001 <0.0001
GI5_8997 0.0024
GI5_9585 0.0024
GI5_9659 0.0001 0.0003
HY2.1_236 0.0002
HY2.1_1615 0.0002 <0.0001
Climate PC2
ABi1B_2055 0.0050
ABi1B_2274 <0.0001
ABi3_2670 <0.0001
ABi3_3707 0.0013 0.0002
CKB34_1245 0.0041
CKB34_1292 0.0008
CKB34_3188 0.0026 <0.0001
CKB34_3240 0.0023 0.0004
CO1_642 0.0106
CRY1.1_275 0.0001 <0.0001
CRY1.1_2742 0.0047 0.0012
CRY1.2_1187 0.0068
EBS_609 0.0071
ELF3_75 0.0037 0.0002
ELF3_1099 0.0050 0.0016
ELF3_1955 0.0018
ELF3_2185 0.0019
ELF3_2559 0.0044 <0.0001
ELF3_2620 0.0046
ELF3_4541 0.0105
ELF3_5376 <0.0001 ≤0.0001
ELF3_5547 0.0008
ELF3_5779 0.0025
ELF3_5785 0.0050
ELF3_6167 0.0009 <0.0001
GI5_33 0.0010 0.0023
GI5_2612 0.0003 0.0002
GI5_9551 0.0002 0.0014
HY1.2_753 0.0043
HY1.2_1511 0.0010
HY2.1_173 0.0023
HY2.1_2491 <0.0001
HY2.2_4222 0.0092
HY2.2_4397 0.0062
PHYB2_1417 <0.0001 <0.0001
PtFt_3044 0.0002 <0.0001
ZTL2.9_5936 0.0037 <0.0001
Climate PC3
ABi1B_2274 0.0007
CRY1.1_275 <0.0001

Candidate SNP Range-wide  
(N = 1021)

Core-only  
(N = 734)

Edge-only  
(N = 290)

ELF3_75 0.0002
ELF3_5376 ≤0.0001
ELF3_6167 <0.0001
HY2.1_2491 0.0001
PtFT1_3044 ≤0.0001

Values are corrected P-values identified by LFMM (FDR = 0.1). Italicized 
SNPs are in the top 5% of Bayes factors from Bayenv2, and those in bold are 
FST outliers in Bayescan (FDR = 0.1).

Table 2. Continued
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their standing levels of genetic diversity, and in their genetic architec-
ture of local adaptation (Hampe and Jump 2011). This makes rear 
edge populations particularly interesting focal regions to understand 
how range context affects the outcome of local adaptation, espe-
cially in the face of maladaptive gene flow (Bridle and Vines 2007; 
Kawecki 2008; Woolbright et al. 2014).

We found that rear edge populations differed from core popu-
lations in their climatic environment, and, as might be expected 
given their more southerly latitude, rear edge populations inhabited 
warmer, and generally wetter climates. What was less obvious was 
that rear edge populations also experienced more variable climates, 
both diurnally and seasonally across the year (Figure 1). Much of 
this appeared to be influenced by the higher elevations of western 
mountain populations, where growing season length and temporal 
variability can change dramatically over relatively short distances 
along steep local gradients such as elevation.

The separation of rear edge populations in climatic space was 
reinforced by the overall patterns of genetic connectivity, suggesting 
limited gene flow between the rear edge and the range core (Figure 2). 
Thus, despite the history of range expansion in P. balsamifera from 
ancestral diversity contained in southern refugial populations (Keller 
et al. 2010; Levsen et al. 2012), contemporary patterns of gene flow 
do not appear to suggest abundant shared diversity between the 
core and the rear edge. Rather, edge populations near the western 
mountains and southern Great Lakes show high internal connectiv-
ity, but limited connectivity with the range core. Rear edge popula-
tions of P. balsamifera in the western mountains also have a history 

of introgression from P. angustifolia and P. trichocarpa, and analy-
sis of genome-wide SNP data indicate positive selection following 
introgression has contributed to adaptive evolution in these popu-
lations (Chhatre et al. Forthcoming). This scenario could facilitate 
the spread of adaptive variants among local subpopulations, while 
minimizing the influx of maladaptive alleles from divergent selective 
environments in the range core (Holt et al. 1997; Sexton et al. 2011). 
Modularity in the genetic network connectivity was also clear for 
populations from Atlantic Canada, while the remaining populations 
across the core showed broad connectivity along a NW-SE trending 
axis, suggesting abundant gene flow in the demographic center of 
the range.

These patterns of connectivity between the rear edge, Atlantic 
Canada, and the range core were mirrored in the DAPC ordination 
of SNP genotypes (Figure 3), which also revealed that the genes con-
tributing most strongly to this regional divergence consisted of 2 
peripheral circadian clock genes, ELF3 and GI5. These genes also 
showed clear signatures of local adaptation as FST outliers and gene–
environment associations, after accounting for population structure. 
While we do not have a putatively neutral set of SNPs from the 
genomic background to compare against, we were conservative in 
our testing approach to local adaptation, setting stringent prior odds 
for selection in Bayescan (1:10 000), controlling for background 
population structure by incorporating latent factors in LFMM, and 
using the population covariance of allele frequencies to control for 
demography in Bayenv2. Agreement among methods in identify-
ing outliers was evident between Bayescan and LFMM, but few of 

Figure 5. Compositional turnover in SNP frequencies modeled by GF. Shown are turnover plots and histograms of SNP-wise cumulative importance along the 
gradient for 4 of the 8 environmental predictors in the multivariate model GF model (Supplementary Figure S3). Each line in a turnover plot represents the 
cumulative variance in allele frequency for a single SNP explained by the environmental predictor, with SNPs in blue indicating significant outliers in both 
Bayescan and LFMM. Position of sites along the gradients are plotted as points along the x-axes for core (gray) or edge (red) populations.

Journal of Heredity, 2017, Vol. 00, No. 00 9

Downloaded from https://academic.oup.com/jhered/advance-article-abstract/doi/10.1093/jhered/esx098/4605251
by Jeanne Light user
on 15 December 2017



the significant loci identified by these 2 methods were corroborated 
by Bayenv2 (Table 2). This probably reflects the influence of SNPs 
under local adaptation used to estimate the Ω matrix in Bayenv2 
in the absence of a neutral set of reference SNPs, thus leading to 
over-correction for population structure when testing for outliers. 
For example, no SNPs from GI5 were in the top 5% of Bayes Factors 
from Bayenv2 in the range core sample, yet we know from previ-
ous studies that included reference SNPs as a genomic control that 
GI5 shows significant evidence of adaptive population structure and 
gene–environment association (Keller et  al. 2012; Fitzpatrick and 
Keller 2015), as well as strong phenotypic associations with bud set 
and bud flush (Olson et al. 2013), 2 traits that are under strong local 
adaptation in P. balsamifera (Keller et al. 2011b). Nevertheless, it is 
probable that some SNPs that are unique to one analysis or range 
comparison are false positives, and thus interpretation of the sig-
nificance of individual SNP loci must be made with caution. The 
general trend however is quite clear—the targets of local adaptation 
to climate in P. balsamifera have primarily been genes peripheral to 
the plant circadian clock (Supplementary Figures S1 and S2), with 
edge and core populations differing in the genetic architecture of this 
response (Figure 4, Table 2).

It is interesting to consider the molecular functions of ELF3 
and GI5 as they relate to adaptive phenology and other circadian 
controlled traits. From work by our group and others in Populus, 
GIGANTEA is a strong candidate for locally adaptive phenology, 
based on elevated population structure, associations with temperature 
and precipitation, extended linkage disequilibrium, and phenotypic 
associations with bud flush and bud set (Rohde et al. 2011; Keller 
et al. 2012; Olson et al. 2013; Fitzpatrick and Keller 2015). GI is 
known to play diverse roles in a number of plant circadian responses 
in addition to phenology, including tolerance to heat and drought 
stress, germination, light signaling, and starch accumulation (Mishra 
and Panigrahi 2015). Thus, adaptive variants in GI may participate in 
any number of pleiotropic responses, but are especially likely in pho-
toperiod-induced phenology (Sawa et al. 2007), consistent with the 
association of this genes with vegetative bud phenology (Rohde et al. 
2011; Olson et  al. 2013). Interestingly, EARLY FLOWERING-3 
also appears to regulate photoperiod-induced phenology as part of 
the evening complex of genes, and mutant elf3 plants show photo-
period-independent flowering (Fowler 1999). Interestingly, ELF3 is 
also known to interact directly with GI, and is known to regulate GI 
expression. This ability to modulate the expression of GI upstream 

Figure 6. GF prediction of adaptive offset of local adaptation under future climate (2050) for 4 SNPs identified as significant outliers by all 3 local adaptation 
methods (Table 2). Offsets are based on modeled associations between climate and SNPs identified as being under local selection, with warmer colors indicating 
greater offset.
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from the CO/FT regulon provides an additional target for selection 
to modify GI regulation and its pleiotropic consequences. Such regu-
lation might be valuable in mountainous areas where the growing 
season may shrink rapidly with elevation, but the photoperiod does 
not. An intriguing follow-up study to this work would be to com-
pare expression of GI and its downstream targets (CO and FT) using 
different 2-locus combinations of ELF3 and GI to test if selection is 
maintaining an epistatic interaction between these genes that allows 
persistence in climatically variable habitats at southern latitudes.

We also showed that climate change is very likely to disrupt 
the SNP–environment association that exists for many genes, and 
is a major source of uncertainty when trying to predict responses 
of forest trees and other plants to climate change. Our estimation 
of adaptive offset based on projections of GF models to future 
climate revealed the most pronounced maladaptation may occur 
in the Pacific NW and interior Canada/Alaska (Figure 6), with 
the rear edge predicted to experience a less severe loss of loca-
tion adaptation. Thus, while rear edge populations contain genetic 
diversity with putatively adaptive alleles not common elsewhere in 
the range, it does not appear that the climatic gradients to which 
they are adapted are the same gradients likely to shift under near-
term climate warming. This may partially be a reflection of the 
influence of elevation on climate in the rear edge. Indeed, most 
rear edge populations show trends in ELF3 frequency that scale 
with elevation and elevation-induced climate, which may provide 
some limited vertical refuge for trees as they attempt to respond 
to climate change.

Conclusions
Local adaptation in natural populations reflects the current and his-
torical balance between gene flow and selection acting on alleles with 
location-dependent effects on fitness. Populations along the rear edge 
represent opportunities for local adaptation due to their occupancy 
of marginal environments, different levels of connectivity to other 
populations, and potential for unique variation not found elsewhere 
in the range. We confirm these predictions in balsam poplar, in which 
we found rear edge and core populations harbor divergent climate-
adaptive alleles for genes in the flowering time pathway. Thus, rear 
edge populations should be targeted for germplasm conservation with 
the recognition that their unique evolutionary history may enable fu-
ture conservation and breeding efforts aimed at mitigating climate 
change impacts on forest trees. Through spatially explicit analyses of 
turnover in the frequency of adaptive alleles across landscapes, stud-
ies such as ours can begin to identify the regions most at risk of loss 
of local adaptation in forests under changing environments.
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