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Pulsars emit from low-frequency radio waves up to high-energy gamma-rays, generated
anywhere from the stellar surface out to the edge of the magnetosphere. Detecting correlated
mode changes across the electromagnetic spectrum is therefore key to understanding the physical
relationship among the emission sites. Through simultaneous observations, we detected
synchronous switching in the radio and x-ray emission properties of PSR B0943+10. When the
pulsar is in a sustained radio-“bright” mode, the x-rays show only an unpulsed, nonthermal
component. Conversely, when the pulsar is in a radio-“quiet” mode, the x-ray luminosity more than
doubles and a 100% pulsed thermal component is observed along with the nonthermal
component. This indicates rapid, global changes to the conditions in the magnetosphere, which
challenge all proposed pulsar emission theories.

Radio pulsars are powered by the energy
released as the highly magnetized neu-
tron star spins down. The radio pulses are

generated in the pulsar magnetosphere, probably
close to the neutron star surface (1, 2). Shortly
after the discovery of pulsars, it was observed that
the radio pulse behavior can discretely change on
time scales as short as a rotation period. These
changes in emission mode can manifest as
switches between ordered and disordered states
or variations in intensity and pulse shape, includ-
ing the complete cessation of observable radio
emission (3, 4).

Because the emitted radio luminosity is a
negligible fraction of the available spin-down
energy, usually substantially less than 10−5, this
phenomenologywas presumed to be related solely
to microphysics of the radio emission mechanism
itself. This perception has recently been chal-
lenged by the identification of a relationship
between the spin properties of neutron stars and
their radio emission modes. PSR B1931+24 was
observed to cease emitting for tens of days,
during which it spins down ~50% less rapidly
(5). PSR J1841–0500 (6) and PSR J1832+0029
(7) exhibit similar behaviors. A number of other
pulsars display smaller changes in spin-down
rate, which correlate with variations in their
average radio pulse shapes (8). The implication

of these results is that mode changing is due to an
inherent, perhaps universal pulsar process that
causes a sudden change in the rate of angular
momentum loss, which is communicated along
the open field lines of the magnetosphere. Whereas
changes in spin-down rate can only be detected
on time scales of a few days or longer, the re-
cently identified link with the rapid switching
observed in radio emission modes suggests a
transformation of the global magnetospheric state
in less than a rotation period. Despite the recent
flurry of pulsar detections at high energies (9), the
only causal relation between the radio pulses and
emission at other wavelengths, likely emanating
from different locations in the magnetosphere,
has been made for optical emission and giant
radio pulses from the Crab pulsar (10).

PSRB0943+10 is a paragon of mode-changing
pulsars. Relatively old (characteristic age 5million
years), with a long spin period (1.1 s), it switches
at intervals of several hours between a radio-
bright, highly organized mode (B) and a quieter
chaotic mode (Q) (11, 12). At the B- to Q-mode
transition, a subpulse drifting structure dissolves
within a few seconds, the emission becomes dis-
organized, and an additional highly polarized ra-
dio component appears, preceding themain pulse
by 52° of pulse longitude (13). PSR B0943+10
has also been detected in two short observations

with the XMM-Newton observatory as a weak
x-ray source (14). These observations, under the
assumption that the x-rays are thermal, were used
to support amodel in which one system of stream-
ing particles produces the subpulse-modulated
radio emission directly, and also results in ther-
mal x-ray emission through bombardment of
the polar cap surface (15). Because the particle
streams are thought to be determined by the mag-
netosphere as a whole, detection of simultaneous
x-ray and radio mode switching would uniquely
probe the interaction between local and global
electromagnetic behavior. Moreover, this would
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strengthen the earlier conclusion that entire mag-
netospheres change, settling down within a few
seconds.

To test these hypotheses, we carried out a
simultaneous x-ray and radio observing cam-
paign on PSR B0943+10 from 4 November to
4 December 2011. These observations were
designed to investigate what changes, if any,
occurred in the x-rays when the radio emission
changed mode. The x-ray observations consisted
of six 6-hour observations in the 0.2- to 10-keV
energy band with ESA’s XMM-Newton space
observatory (16) (table S1), accompanied by ra-
dio observations with theGiantMetrewaveRadio
Telescope (GMRT) in India at 320 MHz and the
international Low Frequency Array (LOFAR) at
140 MHz, both simultaneously.

To identify the radio B- and Q-mode time win-
dows, we folded the radio pulse sequences with
up-to-date ephemerides from the Jodrell Bank
long-term timing program (17) (Fig. 1).We could
determine the times of mode switches fromGMRT
and LOFAR data with an accuracy of a few sec-
onds. Table S2 lists the used B- and Q-mode time
windows, which completely cover our XMM-
Newton observations. In the ~30 hours of us-
able x-ray observations, PSR B0943+10 spent
roughly equal amounts of time in the B and Q
modes.

PSR B0943+10 was clearly detected in each
of our XMM-Newton observations with the simul-
taneously used charge-coupled device (CCD)
detectors PN (18) and MOS-1+2 (19) of the
European Photon Imaging Camera (EPIC). The

derived count rates ranged from that of the pre-
viously reported value for the PN detector of
0.38 (T0.07) × 10−2 counts/s (0.5 to 8 keV) (14)
up to about twice that value, providing evidence
for x-ray variability in an old, rotation-powered
pulsar. Dividing the 0.2- to 10-keV x-ray events
into the radio-derived B- and Q-mode time win-
dows, we found the x-ray count rate to be higher
in the radio Qmode than in the B mode by more
than a factor of 2 (fig. S1). In the B mode, the
PN CCDs had a count rate of 0.44 (T0.07) × 10−2

counts/s, whereas in the Q mode this more than
doubled to 1.08 (T0.08) × 10−2 counts/s. This
finding was independently confirmed with the
MOS detectors, providing evidence for simul-
taneous mode switching in the radio and x-ray
properties.

To search for x-ray pulsations, we selected
events recorded by the PN and MOS-1+2 CCDs
that arrived in the Q-mode time window andwith-
in a radius of 15 arc sec from the source posi-
tion. From this, we obtained a 6.6s detection of
a pulsed signal (Fig. 2B, top) at a period con-
sistent with the rotational frequency predicted
by the Jodrell Bank ephemeris (table S3). The
pulse profile (energies of 0.5 to 2 keV) is broad.
Surprisingly, the x-ray events detected during the
radio B mode do not show any evidence for a
pulsed signal (Fig. 2A, top). Figure 2 shows that
the broad x-ray pulse in the Q mode covers the
phases of the main radio pulse and precursor; the
latter is clearly visible in the Q mode, 52° (0.14
phase) ahead of the main pulse at 320 MHz
(Fig. 2B).

X-ray spectral analysis (16) revealed two com-
ponents in the Q mode. The best spectral fit to
the total (i.e., pulsed and unpulsed) spectrum is
the sum of a power-law component and a ther-
mal blackbody component (Fig. 3A; fit param-
eters in Table 1 and table S4). The spectrum of
the pulsed component in the Q mode is best de-
scribed by a single thermal blackbody model
(Fig. 3B, Table 1, and table S4). It appears that
the spectral fits to the thermal component in the
total Q-mode spectrum and the thermal pulsed
spectrum in the Q mode are statistically consist-
ent (∆ flux = 0.1s, ∆kT = 2.5s). This means that
the Q-mode total x-ray emission consists of an
unpulsed component with a steep, nonthermal
power-law spectrum, and a ~100% pulsed com-
ponent with a thermal blackbody spectrum. This
is also reflected in the variation of the pulsed
fraction with energy (table S5). In the B mode,
the spectrum can be satisfactorily described with
a single power law as well as a single blackbody
shape (table S4). However, the most likely shape
is a nonthermal spectrum (Fig. 3C), indistinguish-
able from the nonthermal component in the total
Q-mode spectrum (supplementary text).

PSR B0943+10 is one of only 10 old (char-
acteristic age >1 million years), nonrecycled radio
pulsars where x-ray emission has also been de-
tected (20–22). Although the surfaces of such
pulsars have cooled substantially since birth, the
observed x-ray emission is argued to be thermal in
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Fig. 2. Aligned x-ray and radio pulse profiles
of PSR B0943+10 in its B and Q modes. (A) B
mode: There is no evidence for a pulsed signal
in the B-mode x-ray data, the flat distribution
showing constant emission from the pulsar. (B)
Q mode: The x-ray profile in the Q mode rep-
resents a 6.6s detection on top of a flat con-
stant level. The solid and dashed lines in the
x-ray profiles are the kernel density estimator
and T1s levels. The weak precursor, present
only in the Q mode, is clearly visible in the
GMRT radio profile at 320 MHz at 52° (0.14
phase) prior to the main pulse, and verified to
be also weakly present in the LOFAR Q-mode
profile.
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some cases. This has led to the conclusion that
such pulsars may have “hotspots” on their mag-
netic polar caps, generated by the bombardment of
particles accelerated in the radio emission process.
In all models, the bombarding particles result from
pair creation in the pulsar magnetosphere. In polar
vacuum gap models (1, 23), this occurs directly
above the surface. Recent adaptations of themodel
(15) predict the thermal x-ray brightness of pulsars
that exhibit regular modulation of their radio sub-
pulse drift. Such modulation is indeed observed
in the B mode of PSR B0943+10 (24), and the
original x-ray detection of this pulsar (14) was
considered to support this prediction under the
assumption that the x-rays have a thermal origin.
However, the reported count rate suggests that the
pulsar was in the B mode during those obser-
vations, whereas our spectral analysis shows that
the x-ray emission in the B mode is actually non-
thermal. Surprisingly, we detect strong thermal
x-rays only in the Q mode, where the observed
radio emission is weak and chaotic.

Space charge–limited flow models (2) also
feature pair-created particles that heat the polar
cap via backflow. These differ from polar gap
models, however, in that charged primary parti-

cles are freely drawn from the neutron star sur-
face. The thermal luminosities predicted for older
pulsars (25) fall below what is observed in PSR
B0943+10’s Q mode and below the model’s
expected nonthermal cascade emission, consist-
ing of contributions from curvature radiation,
inverse Compton scattering, and synchrotron
radiation (26). Such nonthermal emission, ex-
pected on open field lines, would almost cer-
tainly be mode-dependent, in contrast to what we
observe.

Modeling of PSR B0943+10’s geometry (27)
strongly argues that the magnetic and spin axes
are nearly aligned, with our line of sight passing
near the pole (24) (Fig. 4A). This implies that the
isotropically emitted x-rays of a polar hotspot
should appear unmodulated throughout the ro-
tation period, contrary to the observed Q-mode
x-ray pulsations. One possible implication is
that the observed x-ray pulsations result from
time-dependent scattering of the emission with-
in the closedmagnetosphere (Fig. 4B)—a scenario
similar to that proposed to explainmagnetospheric
eclipses of pulsed radio emission in the double
pulsar system PSR J0737–3039 (28, 29). If so,
then the observed thermal emission in the Qmode

is only about half the actual hotspot emission,
doubling the inferred area of the hotspot.

If scattering plays an important role in the Q
mode, the absence of x-ray pulsations and ther-
mal x-rays in the B mode may be attributed to
increased scattering. As suggested to explain
nulling andmode switching in radio pulsars (30),
an expansion in the volume of the closed mag-
netosphere might accompany the mode change,
although it is unlikely to achieve the required de-
gree of screening. It thus appears that at B-mode
onset, the surface hotspot emission is reduced
to undetectable levels within a few seconds, in-
duced by a drastic reduction in the downward
flow of charged particles.

In the context of the polar gap model, it has
been suggested (31) that mode changes occur
when the local surface temperature crosses a
critical value, ~106 K, that separates dominant
emission mechanisms. This would require hot-
spots to be detectable in both modes, in contra-
diction with our results. B-mode emission may
represent a cooler modewhere curvature radiation
dominates. However, the temperature transition
remains unexplained, and our results strongly sug-
gest that a global rather than local mechanism is
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Fig. 3. Unabsorbed (i.e., corrected for absorption by interstellar gas along
the line of sight) x-ray photon spectra of PSR B0943+10. (A) Total (i.e.,
pulsed and unpulsed) spectrum from spatial analyses of skymaps of Q-mode
events from the XMM EPIC PN CCDs (solid symbols) and MOS1+2 CCDs (open
symbols). The solid line shows the best model fit consisting of a power-law
component (broken line) and a blackbody component (dotted line). (B) The
spectrum of the pulsed emission detected only in the Q mode, analyzing the

pulse profiles measured with the PN and MOS1+2 CCDs. The solid curve
shows the best blackbody fit. (C) The total spectrum, as in (A), but here
for the B-mode time windows. The solid line shows the best-fit power-law
spectrum. The thermal blackbody components in (A) and (B) are statistically
the same; the nonthermal power-law components in (A) and (C) are also fully
consistent with being identical. All error bars are 1s. For fit parameters, see
Table 1.

Table 1. Spectral parameters for the best model fits to the x-ray spectra
shown in Fig. 3. Fits are made with a blackbody (BB) shape and/or a
power-law (PL) shape for the total and the pulsed emissions in the Q-mode

window and the total emission in the B-mode. The column density NH
has been fixed at 4.3 × 1020 cm–2. Flux values are given for energies 0.5 to
8 keV.

Mode Model BB (kT ) (keV) PL index G (aE–G)
BB flux, unabs.

(10−15 erg cm–2 s–1)
PL flux, unabs.

(10−15 erg cm–2 s–1)
c2red (df)

Q total BB + PL 0.277 T 0.012 2.60 T 0.34 7.52 T 2.20 7.55 T 1.81 0.81 (20)
Q pulsed BB 0.319 T 0.012 — 7.81 T 1.64 — 0.38 (3)
B total PL — 2.29 T 0.16 — 7.69 T 1.00 0.74 (10)
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required. Indeed, for a near-aligned pulsar such
as PSR B0943+10, a range of quasi-stable mag-
netospheric configurations is expected (32, 33),
and the nonlinear system is proposed to sudden-
ly switch between specific states, each hav-
ing a specific emission beam and spin-down
rate (30).

Whatever the true nature of the mode switch,
the contrast between the Q mode’s enhanced
x-ray emission and reduced radio emission may
well be illusory. Radio emission is only sampled
on field lines instantaneously directed toward us,
and our line of sight (34) makes only a grazing
traverse of the polar cap. The core region of this
polar cap, the probable site of x-ray hotspots,
remains invisible to us at radio frequencies and
may well change differently.

The totality of the mode transition in PSR
B0943+10—changes in radio subpulse behavior
and profile, the appearance of a precursor and,
now, the switching on and off in x-rays of a likely
hotspot—implies that we are dealing with a rapid
and global magnetospheric state change. Through
radio and x-ray “before” and “after” snapshots, we
have shown that a magnetosphere 10 times the
size of Earth completely changes personality with-
in a few seconds; such a near-instantaneous trans-
formation challenges our current understanding of
pulsars and magnetospheres in general.
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Fig. 4. (A) The geometry of PSR B0943+10. The dipole
magnetic axis is inclined at 15° to the (vertical) rotation
axis; the diagonal lines indicate the location of the null-charge surface, sep-
arating regions of positive and negative charge. As the pulsar rotates, the
observer’s line of sight maintains an angle of 9° to the rotation axis, with Qmax
indicating the alignment when the radio pulse is seen (in both modes). The
blue region indicates the supposed closed region, bounded by the light cyl-
inder (at which the corotating magnetosphere reaches a rotation velocity equal
to the speed of light) at 52,000 km. (B) If, in a toy model, extinction of thermal

x-rays from the polar cap is proportional to the extent of the traversed closed
region (~10,000 km at Qmin and ~500 km at Qmax), then we obtain a sinusoidal
fit to the observed Q-mode x-ray pulse, so that maximum recorded emission
corresponds to minimum extinction and vice versa. The lower horizontal line
corresponds to the level of steady nonthermal emission and demonstrates that
extinction of the thermal emission is near total at Qmin. The upper horizontal line
then represents the level of actual unscattered x-ray emission from the polar cap.
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