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ABSTRACT

Pulsar nulling is not always a random process; most pulsars, in fact, null non-randomly.
The Wald-Wolfowitz statistical runs test is a simple diagnostic that pulsar astronomers
can use to identify pulsars that have non-random nulls. It is not clear at this point
how the dichotomy in pulsar nulling randomness is related to the underlying nulling
phenomenon, but its nature suggests that there are at least two distinct reasons that
pulsars null.
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1 INTRODUCTION

Pulsar nulling is the sudden cessation in pulsar emission, a
phenomenon that remains largely unexplained since its dis-
covery by Backer (1970). Nulls are most easily distinguished
from the normal pulsar emission (hereafter, bursts) in his-
tograms of the observed intensity of individual pulses, as
seen in Figure 1. In this figure, the solid-line histogram is
the distribution of the integrated pulsar intensity (normal-
ized with respect to the average) when the pulsar’s beam
is pointing towards the Earth, while the dashed-line his-
togram indicates the same quantity when the pulsar’s beam
is pointed away from the Earth. Nulls are indicated by the
population of intensity around 0 × I/ < I >, and bursts
are located at higher intensities, centred near 1× I/ < I >.
The dotted vertical line indicates the value that best distin-
guishes nulls from pulses.

Following the classic studies by Ritchings (1976) &
Biggs (1992), nulls have generally been regarded as random

in occurrence and cessations of the pulsar-emission mech-
anism. Little observational evidence challenged these pre-
sumptions until recently, as a number of intriguing clues
to the underlying physics have been uncovered. In an ear-
lier study, Redman et al. (2005) showed that the nulls
of B2303+30 occurred exclusively during one of the pul-
sar’s two emission modes, which were distinguishable via
the subpulse drift rate. The nulls of both B0834+06 and
J1819+1305 were shown to exhibit periodicities related to
the subpulse modulation (Rankin & Wright 2007, 2008); and
fluctuation features produced by null periodicities have now
been identified in a number of pulsars (Herfindal & Rankin
2007, 2008). The implication of these results, apparently, is
that many nulls are the result of “empty” sightline traverses
through a rotating “carousel” of emitting subbeams (Desh-
pande & Rankin 2001). Bhat et al. (2007) find intriguing

Figure 1. The null histogram of pulsar B2315+21. The solid his-
togram indicates the distribution of the normalized total intensity
detected when the pulsar is emitting in the direction of the Earth,
and the dashed-line histogram indicates the same quantity when
the pulsar is pointed away from the Earth. Nulls have an energy
distribution consistent with the background, around 0×I/ < I >,
while bursts are centred around 1×I/ < I >. The vertical dotted
line indicates the average intensity threshold chosen to distinguish
nulls from bursts.

evidence that the nulls of B1133+16 are not simultaneous
across all frequency bands, suggesting that some nulls are
not simply broadband cessations of pulsar emission. How-
ever, the remarkable timing study by Kramer et al. (2006) of
B1931+24 indicates that this star’s quasi-periodic, month-
long nulls do represent a turn-off of its emission processes.

Clearly, we have much to learn about the nulling phe-
nomenon. Therefore, we have sought to develop a further
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2 Redman & Rankin

tool for such investigations and to apply it to a suitable
population of pulsars. In § 2, we discuss our observations.
In § 3, we review the Wald-Wolfowitz runs test, which we
use to determine the randomness of the distribution of nulls
and pulses in § 4. In § 5, we discuss our results, with special
attention to B0834+06, before drawing our conclusions in
§ 6.

2 OBSERVATIONS

The observations were carried out using the 305-meter
Arecibo Telescope in Puerto Rico. All of the observations
used the upgraded instrument with its Gregorian feed sys-
tem, 327-MHz (P band) receiver, and Wideband Arecibo
Pulsar Processor (WAPP1). The ACFs and CCFs of the
channel voltages produced by receivers connected to orthog-
onal linearly (circularly, after 2004 October 11) polarized
feeds were 3-level sampled. Upon Fourier transforming, some
64 channels were synthesized across a 25-MHz bandpass with
about a milliperiod sampling time. Each of the Stokes pa-
rameters were corrected for interstellar Faraday rotation,
various instrumental polarization effects, and dispersion.

3 THE RUNS TEST

The runs test, also known as the Wald-Wolfowitz runs test

(Wald & Wolfowitz 1940), is a statistical procedure for de-
termining whether an observed binary sequence, such a se-
ries of coin tosses, supports the hypothesis that the order of
the elements is random. The runs test has many variations;
we have chosen to utilize the “number of runs” test. For a
summary of some other variants, see Bradley (1968).

A run is an unbroken series of like terms. The random-
ness of a sequence depends upon the total number of heads
(n1) and tails (n2) in the sequence, and the number of ob-
served runs (R). When N = n1 + n2 is large (i.e.,greater
than 20, with n1 and n2 each greater than or equal to 10),
the distribution of values of R is approximately normal, with
a mean of:

µ =
2n1n2

n1 + n2

+ 1 (1)

and a standard deviation given by:

σ =

√

2n1n2(2n1n2 − n1 − n2)
(n1 + n2)2(n1 + n2 − 1)

(2)

such that the statistic

Z =
R − µ

σ
(3)

has an approximate standard normal distribution (i.e.,
Gaussian distribution with mean 0 and standard deviation
1). The statistic Z represents how far, as a multiple of the
standard deviation, the observed number of runs is located
from the expected value.

Figure 2 shows a histogram of 8192 Z values for a Monte
Carlo simulation of 1024 random pulse sequences, each with
a null fraction (the fraction of time the pulsar is found in the

1 http://www.naic.edu/∼wapp

Figure 2. Monte Carlo simulations of 8192 1024-period se-
quences, where each pulse has a 32% change of being a null. The
Gaussian indicates the expected distribution of Z-values. Accord-
ing to the runs test, there is a 5% chance that the observed value
of Z will be more than 1.96σ (vertical dashed lines) from the mean
value, which is corroborated here by our empirical measurement
of α(= 0.0509), the fraction of observed sequences that fall out-
side this boundary. The average µ in this simulation was 446.12,
close to the expected value of 446.64 (see Equation 1).

null state) of 32% (chosen arbitrarily). The vertical dashed
lines (at Z = −1.96 and Z = 1.96) indicate the confidence
interval which, in theory, contains approximately 95% of
the observed Z-values. In the figure, these bounds contain
94.91% of the observed Z values. For binary sequences, such
as the pulsar bursts and nulls, −1.96 < Z < 1.96 indicates
that the sequence is indistinguishable from a random pro-
cess at the α = 0.05 significance level, and the hypothesis of
randomness cannot be rejected. Otherwise, the hypothesis
of randomness is rejected. This result is independent of the
null fraction. Note that there are two types of non-random
sequences: those that are “over-clustered” (Z > 1.96) and
those that are “over-scattered” (Z < −1.96).

4 RESULTS

Before analyzing our many single-pulse sequences, we
needed to carefully eliminate interference, which could bias
our results (as the interference might be random or peri-
odic). Most interference exists as spurious and unexpected
increases in the measured intensity or polarization. We used
Chauvenet’s criterion to identify single pulses with intensity
and/or polarization measurements with a < 0.5% probabil-
ity of being part of the rest of the observed sequence (as-
suming an underlying Gaussian distribution). Explicitly, we
eliminated outliers that matched the following criterion:

N ∗ P (Z) < 0.5% (4)

where N is the total number of single pulses in the sequence,
Z is the number of standard deviations the value resides
from the mean (identical to the Z defined in the previous
section, except for a different population), and P (Z) is the
probability of observing a value Zσ from µ. While total in-
tensity histograms are certainly not Gaussians (e.g., Fig. 1),
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On the Randomness of Pulsar Nulls 3

Table 1. Pulsar Nulling runs test Statistics

Pulsar Null Reject Randomness? Average Z
Name Fraction Yes No ±σZ

B0045+33 21% 3 0 −3.5 ± 0.9
B0301+19 13% 15 0 −16.3 ± 6.4
B0525+21 25% 11 0 −8.0 ± 1.5
B0751+32 39% 16 0 −7.6 ± 3.4
B0823+26 7% 8 5 −2.6 ± 1.5
B0834+06 9% 1 6 0.2 ± 1.2
B1133+16 20% 7 2 −3.5 ± 1.7
B1612+07 10% 0 4 −0.5 ± 1.4
B1848+12 54% 7 0 −12.2 ± 6.7
B1942–00 28% 3 0 −7.8 ± 0.4
B2110+27 30% 4 10 −1.1 ± 1.4
B2122+13 22% 13 2 −3.1 ± 1.0
B2303+30 11% 5 0 −6.5 ± 2.1
B2315+21 3% 0 4 −0.8 ± 0.5
J0540+32 53% 3 2 −2.5 ± 1.9

J1649+2533 20% 5 0 −9.7 ± 3.0
J1752+2359 81% 2 1 −6.3 ± 7.9
J2253+1516 49% 4 0 −12.3 ± 3.8

this criterion is conservative compared to the interference
we observe in our pulse sequences.

The removal of individual “pulses” from the single-pulse
sequence cuts the observed sequence into several shorter se-
quences. Each smaller pulse sequence provides us with an
independent, statistically-valid runs test, as long as the se-
quence contains a minimum of ten nulls and ten pulses. In
practice, while most observations exhibited some interfer-
ence, these sequences were very clean.

Our results are presented in Table 1. For each pulsar,
we provide the fraction of time the pulsar was observed in
the null state, the number of sequences for which we did
(|Z| > 1.96) or did not reject randomness, and the average
value of Z amongst all sequences, along with the standard
deviation in the measured value of Z.

5 DISCUSSION

The majority of pulsars in our sample null non-randomly,
but at least three of them null at intervals which are con-
sistent with a random process: B0834+06, B1612+07 and
B2315+21. Furthermore, it is clear that, of the pulsars that
null non-randomly, all do so with a bias towards “over-
clustering” (Z < −1.96) — that is, that non-random nulls
occur in groups.

There are at least two possible explanations for this be-
havioral dichotomy. First, there may be more than one rea-
son that pulsar emission temporarily ceases (for example,
some nulls may be due to absolute cessations of emission
from the pulsar, while others may be produced by “empty”
sightline passes through the subbeam structure of the emis-
sion). Second, nulls may always be random, but the con-
ditions required for nulling may be non-random. We see a
phenomenon of this nature in B2303+30, where nulls oc-
cur mostly (and perhaps exclusively) in one of the subbeam
drift modes (the “Q mode”). However, a close examination
of long Q-mode sequences of B2303+30 confirmed the non-
random nature of the nulls within those sequences. There-
fore, we are inclined to support the hypothesis that there

are multiple reasons that pulsars null, some of which are
indistinguishable from random processes.

The selection of these pulsars was not unbiased. Over-
lap between the burst and null populations (most easily seen
in null histograms) biases the sequence towards randomness.
Therefore, we specifically chose pulsars that had well-defined
null and pulse populations. As our ability to measure the in-
tensity of fainter pulsars improves, the population of pulsars
to which we can apply the runs test will grow.

The nulling behavior of several of these pulsars has
already been mentioned in the literature. In addition to
the aforementioned publications, Lewandowski et al. (2004)
noted that pulsar J1752+2359 exhibits a predictable pulse
emission decay behavior. Weltevrede et al. (2006) suggested
that there was a relationship between the long-period feature
of B1133+16 and its nulls, as well as a possible distortion
in the drift bands of B2110+27 due to nulling. We also note
that J1752+2359 has been observed to exhibit giant pulses
(Ershov & Kuzmin 2006). The runs test provides pulsar as-
tronomers with a quick and easy way to potentially identify
other similar emission oddities.

5.1 Burst-length histograms

The runs test for B0834+06 from our sample appears to con-
tradict earlier results (Rankin & Wright 2007). In that pa-
per, the authors used a “burst-length histogram” to estimate
the randomness of uninterrupted pulse sequences of length
x. This is another modification of the runs test, with each
burst-length acting as an independent (albeit less-accurate)
sample of the randomness of the sequence.

The distribution of the expected values of a burst-length
histogram for a random sequence of pulses and nulls is the
probability of observing a null followed by x bursts, followed
by another null. Thus, the expected values are:

Nµ(x) = Nf2

nfx
b (5)

where N is the total number of periods in the sequence, fn

is the null fraction, and fb = 1 − fn is the burst fraction.
The standard deviation in each burst length is

√

Nµ(x). The
same logic can be used to calculate the expected distribu-
tion of the null-length histogram, with analogous equations
(exchanging the burst and null fractions).

Finding deviations from the expected value in a burst-
length histogram is complicated by the number of bins in
the histogram, as each is an independent test for random-
ness. Thus the probability of finding a deviation somewhere

in the burst-length histogram is increased — the number
of false positives in a burst-length histogram is related to
the length of the sequence, and inversely related to the null
fraction. Therefore, the technique should only be used if you
have multiple sequences to examine and if the deviations are
strongly non-random.

B0834+06 meets both the latter conditions. Figure 3
shows the burst-length histogram from an observation taken
in 2003. Monte Carlo simulations indicate that a sequence
such as this (with a null fraction of 9.13% and sequence
length of 3140 periods) will exhibit 4.0 false positives, on
average. This burst length histogram has 7 burst lengths
outside the range expected for a random distribution at the
α ! 0.05 significance level. Most of these deviations are
quite small and not very significant, but the burst length of
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4 Redman & Rankin

Figure 3. The updated burst-length histogram from Rankin &
Wright (2007). The solid curve indicates the average expected
value for a random distribution, the dash-dotted curve indicates
the 1σ range, and the dashed lines contain the burst lengths that
are within the expected values for the hypothesis of randomness
at the ±1.96σ, α = 0.05 level. Here, burst lengths of 1, 2, 3, 8,
12, 36, and 55 fall outside the latter of these bounds and may
indicate non-random behavior. However, only the burst length of
1 is consistently outside the expected range among most of our
observations. In this observation, the single-burst length is 6.8σ
from the expected value.

1 is 6.8σ from its expected value, and this observation is not
a unique case. Among the 5 observations we analyzed, this
pulsar exhibits an unusual number of single burst pulses in
4 observations, as much as 7.7σ from the expected value,
even though all but 3 of the 27 sub-sequences indicated that
the total number of runs was indistinguishable from ran-
dom. Therefore, we recommend that both tests be applied
to single-pulse sequences, when appropriate.

6 CONCLUSIONS

The runs test is a relatively simple diagnostic procedure for
testing whether a binary sequence is random. We have shown
how this test provides a valuable means for single-pulse pul-
sar astronomers to identify potentially interesting nulling
pulsars. We have also quantified the analysis of burst-length
histograms, with the warning that false indications of non-
randomness should be expected and should be treated with
skepticism, but may reveal insights into the non-randomness
of nulls of specific lengths.
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