CHEM 36
 General Chemistry
 Quiz \#9

April 26, 2002
Name: Sol Lou Shuns
For the reaction:

$$
\mathrm{H}_{2}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{HBr}
$$

it has been determined that the reaction is first order with respect to H_{2} and second order with respect to Br_{2}.

1. Write the rate law for this reaction.

Based on the info given: \quad Rate $=k\left[\mathcal{H}_{2}\right]\left[\mathcal{B} r_{2}\right]^{2}$
2. How would doubling the initial concentration of Br_{2} affect the initial rate of the reaction? (Be quantitative!)

Since the reaction is $2^{\text {nd }}$ - order with respect to $\mathcal{B} r_{2}$, the rate varies with the square of the $\mathcal{B} r_{2}$ concentration. So, doubling the $\mathcal{B r} \underline{2}^{2}$ concentration will increase the rate 64 a factor of: $2^{2}=4$.
3. How would the rate change (be quantitative!) if the temperature at which the reaction was performed was increased by $10{ }^{\circ} \mathrm{C}$? Note: no calculation is necessary!

The Arrfenius rule of thumb is that the rate of a reaction will double for every $10{ }^{\circ} \mathrm{C}$ increase in temperature, so the reaction rate here will double.

