CHEM 36 General Chemistry Quiz #9

		0000
Anrı	L26.	2002

Name:	Sol Lou	Shuns

For the reaction:

$$H_2 + Br_2 \rightarrow 2 HBr$$

it has been determined that the reaction is *first order* with respect to H_2 and *second order* with respect to Br_2 .

1. Write the rate law for this reaction.

Based on the info given:

$$Rate = k[H_2][Br_2]^2$$

2. How would doubling the initial concentration of Br₂ affect the initial rate of the reaction? (Be quantitative!)

Since the reaction is 2^{nd} -order with respect to Br_2 , the rate varies with the *square* of the Br_2 concentration. So, <u>doubling the Br_2 concentration will increase the rate by a factor of: $2^2 = 4$.</u>

3. How would the rate change (be quantitative!) if the temperature at which the reaction was performed was increased by 10 °C? Note: no calculation is necessary!

The Arrhenius rule of thumb is that the rate of a reaction will double for every 10 °C increase in temperature, so the reaction rate here will double.