CHEM 36
 General Chemistry
 Quiz \#5

March 8, 2002
Name: \quad Answer Key

1. The pH of a solution is 5.00 -- calculate the concentration (in $\mathrm{mol} / \mathrm{L}$) of H^{+}in the solution.
$p \mathcal{H}=-\log \left[\mathcal{H}^{+}\right]$, so: $\left[\mathcal{H}^{+}\right]=10^{-p^{\mathcal{H}}}=10^{-5.00}=1.0 \times 10^{-5} \mathfrak{M}$
2. The pOH of a solution is 5.00 -- calculate the concentration (in $\mathrm{mol} / \mathrm{L}$) of H^{+} in the solution.
$p \mathcal{H}=14.00-p O \mathcal{H}=14.00-5.00=9.00$

So: $\left[\mathcal{H}^{+}\right]=10^{-p \mathcal{H}}=10^{-9.00}=\underline{1.0 \times 10^{-9} \mathcal{M}}$
3. The conjugate acid of NH_{3} is the ammonium ion $\left(\mathrm{NH}_{4}^{+}\right)$. If K_{b} for ammonia is equal to 1.8×10^{-5}, is the ammonium ion a stronger or weaker acid than acetic acid $\left(\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}\right)$? Explain.

What is \mathcal{K}_{a} for $\mathcal{N H}_{4}{ }^{+}$?
For a conjugate acid/base pair: $\mathcal{K}_{a} \mathcal{K}_{6}=\mathcal{K}_{\omega}$
So: $\mathcal{K}_{a}\left(\mathcal{N}\left(\mathcal{H}_{4}{ }^{+}\right)=\mathcal{K}_{\omega} / \mathcal{K}_{6}=1.0 \times 10^{-14} / 1.8 \times 10^{-5} \approx 10^{-9}\right.$

Since: $\mathcal{K}_{a}(\mathcal{A c e t i c} \mathcal{A c i d})>\mathcal{K}_{a}\left(\mathcal{N}_{\left.\mathcal{H}_{4}{ }^{+}\right), ~ \mathcal{A c e t i c} \mathcal{A c i d} \text { is the stronger acid }}^{\text {and }}\right.$

