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31. Repeat the calculations of the preceding exercise, but this time start with
[NOBr]o = 0.100 M (half the initial concentration from before).

(a) The half-life doubles when [NOBr]y is halved, going from 6.25 s in Exercise 30(a) to
12.5 s in the present system:

1 1
2 = 4INOBr], ~ (080 M s )(0.100 A4)

=125s=13s (2 sig fig)

(b) See Figure 18.7.
(c) See Figure 18.8.

(d) Compared with the conditions in Exercise 30, the reaction proceeds more slowly now
that [NOBr], has been cut in half:

Rate(t) - k(ﬂ)_B_l__]
B =M MNOBr], +1)
The rate is smaller at each value of ¢:
I 0100 M

2
Rate(0) = (080 M~' s™") ) 1] =80x107 Ms™
+

(080 M~ s™')(0s)(0.100 M

-

2
N o 0100 M ) G
Rate(155) = (080 M~ s )_(0-80 T Y5 SJo100 )+1} =17x107 M
0.100 M i
8) =1{0. -1 -1 : = 6. -4 ~1
Rate(305) = (080 M~ s™) (050 17 530 o100 )+1} 69x107 M's

32. The gas-phase decomposition of NO, displays second-order kinetics:

2NOy(g) — 2NO(g) + 04(g)

Rate = k[NO,]* k(300°C) = 0.54 M ' 57!
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FIGURE 18.7 A plot of [NOBr] versus time for the second-order reaction described in Exercise 31.
The concentration is measured in moles per liter, M.
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1GURE 18.8 A plot of 1/[NOBr] versus time for the second-order reaction described in Exercise 31.
he reciprocal concentration is measured in units of M -
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(a) Since the initial concentration decreases by exactly half,

[NO,], 00925 M
[NO,], = 01850 M

= 0500

we simply compute the initial half-life of the second-order process:

1 1
= = =10.s

KINO,1, ~ (054 M~ s™')(01850 M)

See page 656 and Example 18-6 in PoC.

(b) The half-life changes with time during the course of a second-order reaction, varying
each instant as 1/(k[A],). As a result, the concentration does not decrease uniformly by 3
over each interval #15. See Figure 18.9.

33. Contrary to fact, we assume that the decomposition of NO; is first order, with
k=0.54s":

INOy(g) = 2NO(g) + Ox(g)

(a) Calculate the half-life of the assumed first-order process:

(b) See Figure 18.10.

(¢) The half-life of a first-order process is a constant, independent of concentration: [NO]
would decrease uniformly by 3 over each interval f,, if the reaction were first order.

34. We have two hypothetical processes, a first-order reaction (1) and a second-order
reaction (2):

Rate; = ki[A] ki =1000s"

Rate, = k;[B]* ky=1000 M7' s
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[No2(t)])/[N02(0)]

Time (s)

FIGURE 18.9 A plot of [NO,];/[NO,], versus time during the second-order reaction described in
Exercise 32. Broken lines mark the passage of four initial half-lives, as determined by the conditions
prevailing at #=0. The fractional concentration falls to ( + 1) rather than 27" after » such intervals.

[No2(t)1/[N02(0)]

Time (s)

FIGURE 18.10 A plot of [NO,],/[NO,], versus time for an assumed first-order decomposition
reaction (k = 0.54 s™"), with broken lines marking the passage of each successive half-life. The
incorrect assumption of first-order kinetics is made only for the sake of argument in Exercise 33.
Compare the time dependence shown here with the proper second-order profile depicted in Figure 18.9.
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First, we calculate the initial concentration of B that will equalize the two rates at ¢ = 0:

rate, (0) = rate, (0)

k,[B1; = ki[Al

ki, [A
B, - | I

With [A]o = 1 M, for example, the matching concentration [B]p is also equal to 1 M:

kA 1000 s
[B], = ,/ 2, (OOOM‘ L =1M

Next, we calculate the half-lives. The first-order and second-order values are (In 2)/k and
1/(k[B]o), respectively:

in2 0693
kK 1000s™

Reaction 1: ta = =693%x107" s

1 1
KB, (1000 M7 571 M)

Reaction2:  ty, = =1.00x107 s ([B], =1 M)

The first-order half-life is independent of initial concentration; the second-order half-life
is not:

REACTION 1 REACTION 2

[Alo (M) t2 (s) [Blo (M) tin (s)
(@ 1 6.93 x 107 ] 1.00x 107 s
b 2 6.93 x 107* J2 7.07x 107 s
© 3 6.93 x 107 V3 577 x 107
@ 4 6.93 x 107 2 500x 10™s

Values are written with an arbitrary number of digits for the sake of this hypothetical
exercise. The approximate decimal equivalents of +2 and +/3 are 1.414 and 1.732.

e |
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35. The concentrations of A and B vary with time in the following ways:

Reactionl:  [A], = [A], exp(- k) k, =1000s™" (first order)
Lo, __ (Bl _ 1 -l
Reaction2: [B]; =——F— k, =1000 M~ s~ (second order)
k,t[B], +1

See Figure 18.11 (overleaf). The relevant equations are discussed on pages 653-656 of
PoC and demonstrated in Examples 18-4 through 18-6.

Exercises 36 through 43 deal with activation, temperature, and the Arrhenius law.
See pages 656—659 and Examples 18-7 through 18-9 in PoC.

36. The Arrhenius expression for the rate constant,

Ea
k = Aexp ~RT

makes use of two parameters: the activation energy (E,) and the pre-exponential
factor (4).

(a) Start with the ratio of the two rate constants, and isolate E, on the left-hand side:
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FIGURE 18.11 Concentration versus time for the first-order and second-order processes
considered in Exercises 34 and 35. (Figure continues on next page.)
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Given the following data,

k
2.9 T, = 283.15 K (10°C) T, =293.15 K (20°C)
1

we then obtain a numerical value for the activation energy:

R]n(_'z_) -1 v -1
k) (831457 mol™ K™')In2

_ - _ 4 -1
E, = _1_ —1_ = 1 I _4f78)<10 J mol
T, T, 28315K 29315K
=478 kJ mol™}

See Example 18-9 in PoC (beginning on page R18.20).

(b) Knowing the activation energy, we can now calculate the ratio of rate constants at any
two temperatures:

E.=4.78 x 10* J mol™ T =283.15K 7, =289.15K

k, E, ( 1 1) 478 x10* J mol™ ( 1 1 j L5
—= = - — == - X - =1L
kP T RT, T )| T 83145 mol” K \289.15K  28315K

See Example 18-7 in PoC (beginning on page R18.16).

37. The procedures are largely the same as in Exercise 36. See also Examples 18-7 and
18-9 in PoC.

(a) Given a ratio of rate constants k; and kj,

k, 600s”!
k, 1005

=6.00 T;=298K I;=350K

we first calculate the activation energy:

kz)
Rln(k, (83145 mol™ K™)In6.00 N
E, = - = 2.988 x10* J mol”
11 1 1

L T, 298K~ 350K

=299kJ mol™!
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We then solve for the pre-exponential factor 4 by substituting E,, 7', and k; into the
Arrhenius equation:

Ea
k= Aexp —-“R—T—

ek (Ea) (10057) 2.988 x10* J mol ™! 73107 5!
= CXp| (| = S €X =1L/3X S
Nk, ? (831451 mol™ K~')(298K)

Substitution of T3 and &, (rather than T and k;) leads to the same result.

(b) Having values for both 4 and E,, we can now compute the rate constant at any
temperature:

2.988 x 10* J mol™
83145 mol™ K™')(320K)

k= Aexp(— 5—%—) = (1.73 x 107 s“l)exp[— ( :l =22957"!

38. If the rate constant & obeys the Arrhenius equation,

E,
k= Aexp ~RT

then a plot of In & versus 1/T yields a straight line with slope equal to —F,/R and vertical
intercept equal to In A4:

Ink = (—%-JLHA
nk=-—4 )+

See pages 656—659 and Example 18-9 in PoC.
From the slope (-22,115 K) and intercept (26.9838) of the line in Figure 18.12,
we thus establish that £, = 184 kJ mol ' and 4 =5.23 x 10" M~ 71

E, =R x slope = —(83145 T mol ™" K™')(~22,115K) = 184 x 10° J mol ™

=184 kJ mol™
InA = 269838
A = exp(In 4) = exp26.9838 = 523x 10" M~ 5!

The line itself is calculated to be the “best fit” through the data, as determined by a
least-squares (or linear regression) analysis. This method, in general, ensures that the
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In k

slope = -22,115 K
intercept = 26.9838

0.5}

0 I . 1 I 1 i
1.02 104 106 1.08 1.1 112 114 116 118 1.2 1.22

17 x10-3

FIGURE 18.12  An Arrhenius plot (In & versus 1/T) of the data in Exercise 38. The reciprocal
absolute temperature, 1/7, is expressed in units of K™

slope = —19,307 K
intercept = 31.321

In k

1.85 1.9 1.95 2 205 2.1 2.15

1/T x10-3

FIGURE 18.13  An Arrhenius plot (In k versus 1/T’) of the data in Exercise 39. The reciprocal
absolute temperature, 1/, is expressed in units of K™
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points in any experimental data set are scattered equally above and below the theoretical
line:

Linear regression is available as an automatic function on many scientific calculators.
Alternatively, a manual estimation of the slope (as demonstrated in Example 18-9) will
provide an acceptable estimate.

Note that the units of 4 are assigned for consistency with second-order kinetics.
Note also that the slope and intercept in Figure 18.12 were obtained by adding 273 (rather
than 273.15) to the Celsius temperatures:

Tx=Tc+273
Use of the conversion
Tx =Tc+273.15
results in slightly different values for. the slope and intercept:

Slope = -22,122 K E,= 184 kJ mol™
Intercept = 26.9880 A=526x10" M7t

39. The method is the same as in Exercise 38. Plot In & versus 1/T, and determine the
parameters E, and 4 from the resulting straight line:

Ea)l
lnk-—( R T+lnA

Measuring the slope (-19,307 K) and intercept (31.321) of the line in Figure 18.13, we
obtain E, = 161 kJ mol™ and 4 =4.00 x 10" s":

E, = -R x slope = (83145 mol ™' K™')(~19,307 K) = 1605 x 10° J mol ™"

=161kJ mol™

In4 =31321

A =exp(ln 4) = exp31321=4.00x 10" 57!

The units of 4 (s™') are assigned for consistency with first-order kinetics, as implied in the
problem.
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40. Given the parameters E, and 4,
E.=103 kJ mol™’ A=494x10"s"

start by inserting 7= 300 K into the Arrhenius equation for the rate constant:

Ea
k = Aexp ~RT

— (494x10% 5 )exp| - 1.03x 10° J.mol ™'
o ® )9 (831457 mol™ K™')(300K)

=576%x107 s~

The initial rate, directly proportional to the initial concentration, doubles if [N2Os]o is
doubled. Tt goes from 5.76 x 107" M s when [N2Os]o = 0.0100 M,

Rate = K[N,04], = (576x10 s7)(0.0100 M) =576x 107 M s™
t0 1.15 x 107 M s™! when [N2Os]o = 0.0200 M:
Rate = k[N, 0], = (576x 10 57)(0.0200 M) = 115107 M s™

The reaction is first order.
Calculations for all the other temperatures are done in the same way. Results are
summarized below:

T = 300K 325K 350K 375K 400K

(a) RATE CONSTANT (s™) 576x 107° 138x 107 00210 0222 175

(b) INITIAL RATE (Ms™) 576 x 10~ 1.38x 107 0.000210 0.00222 0.0175
[N,0s]o = 0.0100 M

(¢) INTIALRATE (Ms™)  1.15x 1078 276 x 107 0.000420 0.00445 0.0350
[N205]0 =0.0200 M

——-4
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41. We continue to work with the Arrhenius formulation of the rate constant,

k=4 exp(— ﬂ)
RT
specifying parameters for two hypothetical first-order reactions:
1. E,=100kJ mol™ A=10"s"
2. E,=110kJ mol™ A=10"s"

(a) Insert the appropriate temperature and parameters for each system, and evaluate the
rate constant:

Reaction 1:

1.00x10° J mol™
(831457 mol™ K™')(300K)

k(300 K) = (10" s7')exp }: 388x 107 5™

B 1.00 x 10° J mol™
(831453 mol™ K™')(1000K)

k(1000 K) = (10" 57 )exp

}: 598x107 s7!

L

The value of k increases by more than 12 orders of magnitude (a factor greater than
1 trillion) when the absolute temperature is raised from 300 K to 1000 K.

Reaction 2:

__ 110x10° Jmol™!
| (831457 mol™ K™')(300 K)

k(300 K) = (10 s )exp }: 7.04 %1076 57!

110x10° J mol™
(831457 mol™ K™')(1000 K)

k, (1000 K) = (10" s7)exp

} =180x10% s~

With the activation energy 10% larger, the rate constant &, grows by more than 13 orders
of magnitude over the same range of temperature.

(b) Reaction 1 has the smaller activation energy (which tends to increase the rate) but
also the smaller pre-exponential factor (which tends to decrease the rate).

At the lower temperature, the activation energy dominates and reaction 1 goes
faster than reaction 2 at 300 K. Comparatively more molecules have sufficient energy to
overcome the smaller activation barrier E;;. The advantage of a lower activation energy
in reaction 1 more than compensates for the greater pre-exponential factor in reaction 2.
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At the higher temperature, the frequency of collisions becomes more important.
Since the exponential factors exp(—Ea1/RT) and exp(—E.»/RT') are now closer in magnitude,
the kinetic advantage goes to the process in which the proportion of productive collisions is

greater. Reaction 2, with a tenfold larger pre-exponential factor, goes faster than reaction 1
at 1000 K.

(¢) Solve for the temperature at which k; becomes equal to k,:

En
RT

Ind, ——%=In4,

EaZ_Eal _ (ﬁ_j
RT =ln4, -In4, =In 4

E, —E, 110,000 mol™' —100,000J mol™*

A, - 1014 S—l
Rln(—l) (831457 mol™ K™ )In| —5—
4, 107 s

T= =522 K

Finally, to check the result, we evaluate both k; and & at 522 K (more accurately,
522.334 K before round-off):

—— 100 10° J mol™ ] .

k(522334 K) = (10" s )exp—(83145J K 522554 ) =1000.0's
. mo .

oo | 110x 10° J mol™ ] .

k; (522334 K) = (10" 57 )exp ~ (831451 mol K )522534 K =10000's
. mo .

42. The method is similar to that used in Exercise 40, except now the reaction is
governed by second-order kinetics:

C,HsBr(aq) + OH (aq) —» C,HsOH(aq) + Br(aq)
Rate = k[C,HsBr][OH ]

The initial rate quadruples when the initial concentrations [C,HsBr]o and [OH ]y
are both doubled.
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One sample calculation (at 10°C) should suffice. We use the parameters specified
in the problem:

E,=89.5KImol”"  A4=430x10"M"s" T=283.15K (10°C)
Rate constant:
-
= X —
P\ T RT

8.95x10* J mol™*
83145 mol™ K')(28315K) |

= (4.30 x 10" M s‘l)exp{—(

=13279x107° M1 s =133x107° M~'sT (3sig fig)

Initial rates:

[C,H;Br], =[OH" ], = 0.100 M
Rate(0) = k[C,HBr]o[OH ],
=(13279x107 M~ s7)(0.100 M)(0.100 M)

=133x1077 Ms™

[C,H;Br], = [OH"], = 0200 M
Rate(0) = k[C,H;Br],[OH "],
=(13279x 107 M~ s™)(0200 M)(0200 M)

=531x107" M s

A full set of results is presented in the following table:
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T =28315K 293.15K 303.15K 313.15K 323.15K
(a) RATE CONSTANT (M~ s™) 133x10™ 4.86x10™ 1.63x10™ 507x10™ 1.47x107°

(b) INITIAL RATE (M's™") 133x107 4.86x107 1.63x107° 5.07x107° 1.47x107
[Alo=[BJo=0.100 M

(¢) INITIAL RATE (M's™) 531x10”7  1.94x107% 6.52x10° 2.03x107° 5.87x107°
[Alo = [B]o = 0.200 M

43. We use the Arrhenius equation one last time, applying the formula to a set of
second-order nucleophilic substitution reactions.

(a) Insert the appropriate parameters for each system, and use the equation

.y ( &)
= ASXP\T Ry
to calculate the second-order rate constant at 40°C.

Reaction 1:

Eq1 = 86.6 kJ mol™ A=149x 10" M7t s T=313.15K (40°C)

8.66x10* J mol™’
83145 mol™ K™')(31315K)

ky = (149 x 10" M~ s")exp[— ( ]: 535x107 M7 5™

Reaction 2:

Ea» =81.6 kJ mol™ Ay =242 x 10" M7t s T=313.15K (40°C)

816x10* J mol™
83145 mol ™' K')(31315K)

ky =(242x10" M7 s_l)exp{—( }=5.93x 102 M™'s™
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Reaction 3:

Eqx3 = 89.5kJ mol™ A3=430x 10" M7 s T=313.15K (40°C)

895 x 10* J mol™!

(31457 mol™ K )31315K) |~ 107 M~ s

ks =(4.30>< 10" Mt s")exp -

Note that the substitution 7= 313 K produces slightly different values for the three rate
constants:

k=526x10"* Mgt k=584x 10" M st k=499%x 107 M5!

(b) For each S\2 reaction, the rate law is given by the equation
Rate = k[A][B]

where A and B are the two reactants. Since the problem stipulates that [A]y = [B], = 0.10 M
for the whole set, the initial rates are directly proportional to .
Reaction 2 has the largest rate constant. Its initial rate is highest of the three.

(¢) Activation energies and other kinetic parameters for the forward reaction are
insufficient to fix the value of an equilibrium constant. To predict the composition at
equilibrium, we need the standard difference in free energy between reactants and
products. Alternatively, we need rate constants for both the forward and reverse reactions
at each step. See the next several exercises.

This final block of exercises deals with the mechanistic considerations of Section 18-6.
For sample problems, see Examples 18-10 through 18-12.

44. The following material in PoC is relevant to the present exercise and the next:

Law of mass action: - Section 12-4 and Example 12-2
Arrhenius law: pages 656—659 and Examples 18-7 through 18-9
Principle of detailed balance: pages 682-684 and Example 18-12

(a) Insert the specified equilibrium concentrations

[Alg=1.00 M  [Blq=2.00M  [Clq=5.00M  [Dleg=4.00 M

directly into the mass-action expression for K:
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A+B - C+D
_ [Cleq[Dleq _ (5.00)(4.00) 100
[Al,[Bl,, (1.00)(2.00)
(b) We use the Arrhenius parameters
E.=100.0 kJ mol™ A=1.00x10"pm" s

to evaluate the forward rate constant at 700 K:

Ea
k, = Aexp ~RT

1000 x 10° J mol ™’
83145 mol™ K™')(700 K)

= (1.00 x 1010 a7t s"l)exp{—(

=345 M7 57!

(¢) Forward and reverse rates for the elementary reaction are equal at equilibrium:

kv
A+B 2 C+D
ko

forward rate = reverse rate
k., [A]eq [B]eq =k_ [C]eq [D]eq

[Cleg[Dlg

ke _
ko [Alg[Bly

Having established values for K and k. in (2) and (b) above, we now solve for the rate
constant £_ in the reverse direction:

45. We rework the preceding calculation at 800 K, looking to discern the effect of
temperature on both the equilibrium position and kinetics of the reaction. The method is
the same as in Exercise 44.
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(a) The equilibrium constant increases 300-fold as the system goes from 700 K to 800 K:
A+B -> C+D

[Cle[Dleg  (10.00)(15.00)

— _ 3
“[ALy[Bl, _ (010)(050) ~ >0*10

(b) The forward rate constant (k.) increases from 3.45 x 10° M~ s™! at 700 K to
2.96 x 10° M~" s™" at 800 K:

E

1.000 x 10° J mol ™!
(831457 mol™ K™')(800 K)

=(100x10'0 A~ s“)exp{—
=296x10° M7 57!

(¢) The reverse rate constant (k-) decreases from 34.5 M~ s™" at 700 K to 0.99 A/~ s at
800 K, conforming to the larger value of X at the higher temperature:

k, 296x10° M7'g™! o
k== . =099 M~'s
K 30x10

(d) The reaction is endothermic. Its equilibrium constant increases with temperature, in
accordance with Le Chételier’s principle: Heat functions as a reactant, and the system
relieves the stress of a higher temperature by moving to the right—toward the
consumption of heat and the manufacture of product. See Section 12-6 and Examples
12-15 and 15-9 in PoC.

Note that the rate constant k., a kinetic (nonthermodynamic) parameter
determined by E,, 4, and 7, does not enter into the argument. The value of ks grows
exponentially with temperature,

Ea
k, = Aexp ~RT

regardless of the endothermicity or exothermicity of the process.
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46. We are given a forward rate constant (k+) and AG° for the gas-phase formation of HI
from H, and I, at 500 K:

ke
Ha(g) + In(g) < 2HI(g) k(500 K)=43x 107 M7 s
k.
K= —[—@f— AG°(500 K) = ~20.2 kJ (per mole of Hy)
[H,11,] ' 2

(a) See Section 14-8 and Example 14-8 for the relationship between the equilibrium
constant (K) and the difference in standard free energy (AG°):

<) _ 4 -1
.. exp[‘ AG_] _ exp{_ ( (~2.02x10* J mol ™) )} s o0k

RT 83145 ] mol™ K™)(500 K

(b) We assume, for now, that the transformation is elementary (second order in both
directions), and we apply the principle of detailed balance:

forward rate = reverse rate  (at equilibrium)

ey [H Jg [T Jeq = *-[HIIG

[HIJ,
[HZ]eq [12]e.q -

k.
k_

Insertion of ks = 4.3 x 1077 M~ 57! and K = 129 gives us a value for k-

k, 43x107 M7's” o1 i
== =33x10° M s”
=% 129 33 >

See pages 682—684 and Example 18-12 in PoC.
Note that the reaction actually occurs in two steps, as described in the next

exercise:

k
1. L+M 2I1+1+M (rapid, equilibrium)

2. H,+1+1 &2 2HI (slow)

Net: H,+1, & 2HI
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We shall see subsequently that our current &, is effectively a composite rate constant
equal to kiky/k_|, whereas our current k_ is equal to k. Applying the principle of detailed
balance to each step, we then recover the same expression previously obtained for the

Tkak, |k k_

47. We have two mechanisms to evaluate, each of which yields the same macroscopic
rate law for the gas-phase formation of hydrogen iodide:

Ha(g) + I(g) — 2HI(g)
Mechanism 1 consists of only a single, bimolecular step:
H,+1, — 2HI
Here the rate law happens to follow tile stoichiometry, since the reaction is elementary:
Rate = k[Hz]v[Iz]

Mechanism 2, by contrast, posits a rapid first step involving a third species (M), followed
by a slow second step:

ky

1. L+MEI1+1+M (rapid, equilibrium)
k-

2. Hy+1+1 —f o (slow)

Net: H,+I, ——» 2HI

- The system comes to a pre-equilibrium in step 1, with the proportions of I, and the
reactive intermediate I determined by the equilibrium constant X;:

IZ

L]

—
md

|

k=W _ kA
1= —k-l

L |

[10° = K,[1,]
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The quantity [1)? is then inserted into the rate law that comes from the slow,
rate-determining step 2,

Rate = ky[Ho][1]>
to yield a final form that involves only the reactants Hz and I,:
Rate = kz[Hz]K 1 [Iz] = k[Hz] [Iz]

The overall rate forward rate constant, , is equal to Kk, (equivalently, kiky/ k).
See Section 18-6 in PoC, as well as Examples 18-10 and18-11.

48. Imagine that the reaction proceeds through some transient species S:

k] k[ =10
. A2

k_] k..l =1

k2 k2 =3
2. 2 B

k_z k_z =30
Net: AE2B

At system-wide equilibrium, the principle of detailed balance requires that

Bl Sl Bl k&

K= = = X = X
[A]cq h [A]eq [S]cq k—l k—2

for the two-step mechanism. Given the equilibrium concentration of A, together with

values for the four rate constants, we can then solve for the equilibrium concentration
of B:

Bly  kk
[A]cq k—lk—2
B kk, A 10x3 I MelM
= = X =
[ ]eq k..lk_z [ ]eq 1 X 30

For a related calculation see Example 18-12. The principle of detailed balance is covered
on pages 682-684 of PoC.
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49. The suggested mechanism for the reaction
ZNOy(g) + Fa(g) — 2NO.F(g)

contains a slow step followed by a fast step:

k
1. NO, +F, —'5NO,F +F (slow)
2, F+NO, —2 ,No,F (fast)

Net: 2NO, +F, —— 2NO,F

(a) The slow step (step 1) determines the rate. See pages 678-680 and Example 18-11 in
PoC.

(b) The rate law derives directly from the rate-determining elementary step:

Rate = £, [NO,][F,]

50. Consider the following reaction and proposed mechanism:

ky

1. OCI' + H,0 2 HOCI + OH- (rapid, equilibrium)
ko

2. I +HOCI—*2 ,Hor+ - (slow)

3. OH +HOI—B ,H,0+01- (fast)

Net: OCl (aq)+1- (aq)——Cl (aq) +OI"- (aq)

(a) Step 2, specified as slow, determines the overall rate of reaction:

2. I"+HOCI—2, HOT+ CI°  (slow)

Rate = £, [I7][HOC]]

The concentration of HOC, an intermediate, is obtained from the pre-equilibrium
established in step 1. As usual, the equilibrium constant does not include a factor [H,O(2)]:
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k
1. OCl" +H,0 & HOCI + OH™ (rapid, equilibrium)
ko

_ [HOCI]J[OH"]
7 [ocT]
K,[OCI™]

[HOCI] = Of]

The overall rate law follows upon substitution of this latter value for [HOCI]:

_ _. K[OCI] [I7][OC17] A
Rate = k,[I7]J[HOCI] = £, [I =k k=k,K
ate = by J[HOCH = ky[17)= o = ks (k=kK)
(b) Substitute the equivalent form
ky
K, =—
1 k |

into the rate law to express the overall rate constant, &, in terms of ki, k), and k,:

-k
k=k2K1=k2k—ll

The substitution is justified by the principle of detailed balance (pages 682-684 and
Example 18-12 in PoC).

51. We are given a two-step mechanism for the production of molecular oxygen from
ozone:

k
1. 03 O, +0 (rapid, equilibrium)
k-y
ky
2. 0;+0——>20, (slow)
Net: 204(g)—>30,(2)

(a) Oxygen radicals build up to a steady concentration during the first step, reaching a
quasi equilibrium after some short time:
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ki
1. 03 & 0,+0 (rapid, equilibrium)
k-
[0,1[O]
K, =
' 05
o7 Kil0:]
[0,]

The slow second step is rate determining:

2. 0,+0—2320,  (slow)

K[03] _, [0,]"

Rate = k,[0;][0] = £,[0,] [0,] " [0,]

(k = k,K,)

(b) Replace the first-stage equilibritim constant by the expression

k]
K, =7c'—1

to express the overall rate constant £ in terms of the individual rate constants &, k-, and k»:

k
k=k2K1=k2%—'T

The substitution is justified by the principle of detailed balance (pages 682—684 and
Example 18-12 in PoC).



