Chapter 18

Kinetics—The Course of Chemical Reactions

We move from static structure and equilibrium to the time-dependent dynamics of
chemical reaction: kinetics and mechanism. The accompanying exercises offer a chance
both to work with the key equations and to strengthen the conceptual links between
macroscopic rate laws and microscopic pathways. Large blocks of problems are devoted
to first-order kinetics, second-order kinetics, the Arrhenius law, and assorted mechanistic
considerations (including the principle of detailed balance).

The first 16 exercises provide a mostly qualitative recapitulation of the entire chapter,
treating such topics as activation (Sections 18-2, 18-4, and 18-3), rates and rate laws
(Section 18-3), elementary reactions (Section 18-6), and the difference between kinetic
transformation and thermodynamic equilibrium (Section 18-5). Quantitative issues are
addressed in earnest beginning with Exercise 17.

1. A transition state is an unstable species. It exists at a local maximum of potential
energy. An intermediate is a stable species, although often short-lived. It existsat a
local minimum of potential energy (but at a level still higher than the final prod.cts).
See Figure 18.1 (overleaf).

2. The energy of reaction, AE,, pertains to the fixed thermodynamic difference between
reactants and products. The activation energy, E,, pertains to the difference between the
reactants (or some other stable species) and a particular transition state. Its value depends
on the specific mechanism of reaction. See Figure 18.2.
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FIGURE 18.1 Labeled energy-of-reaction diagram for the hypothetical process considered in
Exercises 1 and 2. (a) Reactants. (b) Products. (c) Transition states. (d) Intermediates. See also

Figures 18-8, 18-11, and 18-13 in PoC.
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FIGURE 18.2 Energy diagram for the hypothetical process considered in Exercises 1 and 2.

(a) Reaction energy, AE,. The transformation is exothermic, yielding products lower in energy than
the reactants. (b) Activation energy E, for the slow step, equal in this system to the difference
between the reactants and the first transition state (the tall peak on the left). In the second step, the
difference between the intermediates and the corresponding transition state (the small peak on the
right) is not as great. See also Figures 18-8, 18-11, and 18-13 in PoC.
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3. We are given the standard change in free energy for two hypothetical reactions:

AG°(1)= =100 kJ mol™
AG°(2) = —1000 kJ mol™

These values correspond to fixed thermodynamic differences between reactants and
products, independent of any particular route of reaction.

(a) AG® determines the value of X, the equilibrium constant, through the relationship

0 AG®
G - T K = —_
A RTIn K exp{ RT }

Reaction 2 has the more negative value of AG?® and hence the larger equilibrium constant.
It will produce the greater proportion of products at equilibrium. See Section 14-8 in PoC.

(b) We have insufficient information to determine the rate of reaction. To do so, we
need to know the difference in energy between reactants and a transition state—not
between reactants and the final products.

4. We continue with the processes of Exercise 3, this time taking into account the
activation energies as well:

AG°(1)= -100 kJ mol™ Ex(1)=10kJ mol™
AG°(2) = -1000 kI mol™* Ex(2) =50 kJ mol™

(a) The reasoning is the same as before: Reaction 2 has the more negative value of AG®
and thus the larger equilibrium constant. It yields the greater proportion of products at
equilibrium.

Note that AG®, a fixed thermodynamic separation between reactants and products,
remains the same regardless of kinetic pathway. The rate of reaction (as determined by
the activation energy) has no effect on the composition of the equilibrium state.

(b) Reaction 1 has the smaller activation energy and therefore the higher rate. I comes
to equilibrium faster than reaction 2.

5. Again, two hypothetical reactions:

AE°(1)= 50kJ mol™ Ex(1)=55kJ mol™
AE°(2) = =50 kJ mol™ Eo(2) =50 kJ mol™
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(a) The symbols R, X*, and P denote reactants, transition state, and products,
respectively. Reaction 1 is represented on the left of the diagram. Reaction 2 is
represented on the right:
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Note that all differences in energy are relative, not absolute. The zero of the energy scale
is arbitrary.

(b) Reaction 2 has the smaller activation energy. It runs faster than reaction 1 at a given
temperature.

Realize, though, that the kinetic advantage of reaction 2 does not derive from its
exothermicity relative to reaction 1. Rate of reaction is determined by the activation
energy, not by the net difference in energy between reactants and products.

(¢) The endothermic process (reaction 1) will yield more product at a higher
temperature—once equilibrium is attained. According to Le Chételier’s principle, heat
functions as a reactant in an endothermic reaction. A nonequilibrium system at high
temperature, ridding itself of excess heat, moves to the right and comes to equilibrium
with a larger proportion of products. Its equilibrium constant increases with temperature.
See Section 12-6 as well as Examples 12-15 and 15-9 in PoC.

6. Similar to the preceding exercise, but with a new set of energy parameters for
reaction 2:

AE°(1)= 50 kJ mol™ Ey(1) =55 kJ mol™
AE®°(2) = -100 kJ mol™ E(2) = 60 kJ mol™
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(&) 1he conventions are the same as in Exercise 5: R, X} and P denote reactants,
wanation state, and products, respectively. Reaction 1 is represented on the left;
jeaction 2 is represented on the right:
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(b) Reaction 1, with the lower activation energy, runs faster than reaction 2 at any given
(cmperature. It makes no difference that reaction 1 is endothermic and reaction 2 is
exothermic.

(¢) The comparison is the same as in Exercise 5(c): Reaction 1, the endothermic process,
yields more product at a higher temperature. The transformation is driven to the right, as
predicted by Le Chatelier’s principle. See the comments in the preceding exercise.

7. Start with the Arrhenius equation for the rate constant:

Ea
k= Aexp ~RT

The ratio of k at two temperatures is independent of 4,

and thus we have an expression for k, in terms of k1, Ea, T, and Ty:
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E (1 1
k, =k exp "R ?2'-—3:1-

Given k; = 1 when T} =273.15 K (0°C), we then calculate a numerical value for &;:

SN
2 = P T 3145 T mol ' K\ T,  27315K

See pages 656-659 and Example 18-7 in PoC, as well as Exercises 36 through 43.
One sample calculation (at 10°C, with £, =1 kJ mol™") should suffice:

T,=283.15K E,=1000J mol™

SN EPE
2 = P T e 145 T mol K"\ T, 27315K

1000 J mol™ ( 1 1 )
=P T 83145  mol” K- \28315K  27315K).
= exp(0.015551)

- 1016

The others are all handled in the same way. Four-digit answers are given below.

RATE CONSTANT (arbitrary units)

P

E, (kI mol™) 0°C 10°C 20°C 30°C 100°C
(a) 1 1.000 1.016 1.030 1.045 1.125
(b) 10 1.000 1.168 1.350 1.546 3.254
(©) 50 1.000 2.176 4.491 8.835  365.0
(@) 100 1.000 4735  20.17 78.05 1.332 x 10°

8. See Figures 18-12(a) and 3-2 in-PoC.

(a) The catalyzed reaction, rendered in color both in the present exercise and in Figure
18-12(a), has the lower activation energy. Its transition state lies closer to the reactants.

(b) The difference in free energy between reactants and products is the same for both
reactions. Catalysis does not change the yield of products at equilibrium.
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Equilibrium constant:

X AG® 8.6x10° J mol™ 0031
= exp| — = exp| ~ =0.
AU RT ) T 7 (831457 mol™ K-')(29815K)

Both AG® and K are derived from fixed thermodynamic differences between reactants and
products. They provide no insight into the kinetics of a process, which depends on
activation energy and mechanism.

(b) The nonspontaneous conversion of graphite into diamond requires a small, but
positive, change in standard free energy.

Free energy:
C(s, graphite) — C(s, diamond)
AG® = AG{[C(s, diamond)| - AG{ [ C(s, graphite)]
= (2.9 kJ mol™) - (0 kJ mol™)

=29 kJmol™ (nonspontaneous, AG® > 0)

Equilibrium constant:

X AG® 2.9%10° J mol™ 031
=exp| ~ =exp| — =0,
AU RT ) T T (831457 mol” K)(29815K)

(¢) The dissolution of NaCl is spontaneous at 25°C. The products (aqueous Na* and CI7)
stand lower in free energy than the reactant (solid NaCl):

Free energy:
NaCl(s) = Na'(aq) + Cl (aq)
AG® = AG{|Na* (aq)|+ AGF[CI™ (aq)| - AG7 [NaCl(9)]
= (~2619 kJ mol™ ) +(~ 1312 kI mol ™) - (~ 3842 kJ mol )

=-89 kI mol™" (spontaneous, AG® < 0)
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fiquilibrium constant:
p AG® (-89x10° I mol ™) 6
= exp| — = exp| — =
PL"RT )% (831457 mol™ K)(29815K)

11. We are told only that a certain hypothetical process is first order in A, first order in B,
and second order in C:

A+2B+C —» D+3E
(a) The rate law is implicit in the statement of the problem:

first orderin B
first order in A L second order in C

Rate = K[A]'[B]'[C]* = KAJBIICT

See pages 650-653 in PoC.

(b) A reaction rate has the units M s~*, where M = mol L~!. Each factor of concentration
in the rate law has the units M, and thus with four powers of concentration the units of k
(the rate constant) are M Sgh

rate Ms™ 3
=~ 5~ M™s
[A][B](C)? Mx Mx M?

(¢) Given the rate, rate law, and concentrations, we calculate the numerical value of the
rate constant &:

§ = rate _ 1 Ms™ M s
[AIBICE (1 M)1 M)t M)

(d) Substitute k=1 M3 s and [A] = [B] = [C] =2 M into the rate equation:

Rate = A[A][B][C)* = (1 M7 )2 M)2 M)2 MY =16 Ms™
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(e) The process does not occur in a single, elementary step. If it did, the exponents in the
rate expression would match the stoichiometric coefficients in the chemical equation. We
would have

Rate = k[A][B]*[C]
rather than
Rate = k[A][B][C]?

The result is not surprising, of course, since a simultaneous collision of four molecules is
unlikely almost to the point of impossibility.

12. If a reaction proceeds in a single step, then its initial rate law matches the
stoichiometry of the reactants:

aA + bB + cC — products
Rate = k[AJ’[B]°[C]°
Order=a+b+c

See pages 675678 and Examples 18-10 and 18-11 in PoC.

MOLECULARITY CHEMICAL EQUATION RATELAW  ORDER
(a) bimolecular A+B - 2C+D+E k[A][B] 2
(b) unimolecular A > 3B+C k[A] 1
(¢) bimolecular 2A - B KA) 2
(d) termolecular A+B+C —-> D k[A][B][C] 3
(¢) termolecular A+2B 5> C K[A][BT? 3

13. The reasoning is the same as in the preceding exercise (and is valid only if the
reaction occurs in a single, elementary step):

Rate = k[A]*[B]°[C]
aA + bB + ¢C — products
Order=a+b+c

The termolecular reactions, (d) and (e), are least likely to occur. See the table that follows.
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RATE LAW CHEMICAL EQUATION ORDER MOLECULARITY
(a) k[A] A — products 1 unimolecular
(b) k[A]2 2A — products 2 bimolecular
(¢) k[A][B] A +B — products 2 bimolecular
(d) k[A]z[B] 2A +B — products 3 termolecular
(e) K A][B][C] A+ B+ C — products 3 termolecular
14. Maybe, maybe not. Itis possible that the stated expression represents the rate law,

but we cannot make any determination unless we know the mechanism. The initial rate
law matches the stoichiometry of the reactants only if a transformation occurs in a single
step. An experimental investigation must be undertaken to resolve the question.

15. False, for the same reasons given in the preceding exercise. Although each reaction
has the same overall stoichiometry, the rate laws need not be the same—whether of the
form k[A]Z[B] or any other. The rate expressions depend on the activation energy and
also the microscopic mechanism of reaction, a sequence of events not evident in the
balanced equation.

16. Generalizing the arguments made in the text (pages 648-649), we define the average
rate of any process as the change in some quantity f{f) over a specified interval of time:

A fU)=S)

Rate=——=
(3) Rate= A(distance) 100m 990 m s~
= atme) _ 101s o
(b) Rate A(leaves) 1634 leaves (1 wk 1d ] 0001351 1 1
ate = = X X = 0.
A(time) 2 wk 7d < 86400s cavess
© Rate A(babies)  2,993,00 babies ( 1y 1d ) 009451 babies 5~
= = X X = V.
A(time) y 365d 86,400’ abies s
A[NOCI] 040 M 1mi
(d) Rate= [NOCL] _ 04y M M 0.0033 Ms™

A(time) 2.0min  60s

These rates are average quantities, computed over relatively long intervals of time. If we
wish to predict a change over a short interval (between, say, midnight and one second
after midnight), then we must record the data as a more closely spaced series in time.
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Exercises 17 through 20 pertain to the formulation of macroscopic rate laws in general,
as introduced on pages 647-653 and elaborated further in Examples 18-1 through 18-3.

17. The rate of reaction for the generic process
aA+bB - cC+dD

is defined equivalently as

- 412){4). 2.

By adopting this expression, we assume that the macroscopic rate is }tﬁaffeeted by the
presence of intermediate species. If the assumption is valid, then reactants disappear and
products appear at the same rate. See pages 648—650 and Examples 18-1 and 18-2 in
PoC.

(a) Under the conditions as stated, chlorine gas disappears with an initial rate of
0.0030 M s™! when reacting with nitric oxide:

2NO(g) + Clx(g) — 2NOCI(g)

AlCh]

- -1
N 0.0030 Ms™

The concentration of NO, another reactant, is stoichiometrically coupled to the
concentration of Cl,:

- l(ﬁﬂ) - _E(Mj _ _(__ 0.0030 M S—l)

2\ A N A
AN AlCl |
ANol_,, (—[—21] =2x(~0.0030 Ms™")=-00060 M s
Ar At

A minus sign attached to any value A[R]/At indicates that the reactant R is being
consumed. The stoichiometric scaling factors ensure that the rate for each species is
consistent with an overall common rate of magnitude 0.0030 Ms™":

I

e =400

1 -1 -1
=5 ) (-00060 A s™) = 0.0030 M s

T2
| |

A[C
Rate = (—[—2—]) = ~(~00030 A s7) = 00030 M s~
IV A |
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(b) The concentration of NOC], a product, increases with time. It varies in the same way
as the concentration of NO, but with a positive sign to reflect the appearance rather than
disappearance of the species:

1(smoc) __1( SN0}

2 At AN

AINOCI]  A[NO
A[NOCI) __ AINOL_ —(~00060 M s™') = 0.0060 M 57!
At At

Again, the value is consistent with an overall rate of reaction equal to 0.0030 M s

1( A[NOCI]) 1
Rate = —(—[————]-) - =(00060 M s™)=0.0030 M's”
A 2

(¢) We assume that the relationship between concentration and time is linear over the
interval considered (¢ = 5.0 s):

[NOCI], = [NOCI}, +

AINOCI]
A A
At

=0+(00060 M s7')(505)

=0.030 M

18. Substitute the stated values of [NOJo and [Cly]o into the experimentally determined
rate law:

Rate = k[NOJ[CL] K263 K)=3.0M7s"

For example, the initial rate (at £ = 0) proves to be 3.8 x 10™* M s~! under the conditions
specified in (a):

[NO]Jo = 0.050 M [Cly]o = 0.050 M
Initial rate = X[NOJ3[Cl, 1o

_ (30 M 570050 M)"(0050 M) =375x 107" M 5™

=38x107™* Ms™' (2sigfig)
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The remaining calculations are all done in the same way.

[NOJo (M)  [Chlo(M) RaTE(Ms™)

(@  0.050 0.050 3.8x 107
(b)  0.050 0.100 75x%x 107
(¢ 0.100 0.050 1.5x 107
(d 0.100 0.100 3.0x 107

19. Inspecting the data, we make the following observations:

1. The rate doubles when [O;]o is doubled and [NO]p is held constant (trial 2

versus trial 1): -

142x 1072 M s™!
711x1073 M s

=2.00

2. The rate triples when [O;] is tripled and [NO], is held constant (trial 3 versus
trial 1):

213x107% Ms™
711x107> Ms™

= 3,00

3. The rate quadruples when [NO]y is doubled and [O,], is held constant (trial 4
versus trial 1):

284x107% Ms™
711x1073 M s™!

=3.99

4. The rate increases ninefold when [NOJ is tripled and [O5]p is held constant
(trial 5 versus trial 1):

640x1072 Ms™
711x1073 M s™

=9.00

From observations 1 and 2 we find a first-order dependence on [O5],
Rate < [O,]
and from observations 3 and 4 we find a second-order dependence on [NOJ:

Rate < [NOJ?
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Overall, the reaction is third order:
Rate = {[NOJ*[02]

To establish the value of k, we substitute the rate corresponding to each pair of initial
concentrations. The procedure is demonstrated below for trial 1:

ratev
k=—"73
[NOJ*[O,]

711x10° Ms™
(100x 107 M) (100x 107 M)

=711x10> M2 s (trial1)
Averaging over the five trials yields £=7.10 x 10° M257"

20. Carry over the rate constant derived in the preceding exercise,
k=7.10x10° M2 s™!
and insert the specified initial concentrations into the rate law:
Rate = k[NOJ*[02]
Trial 1, for example, shows an initial rate of 8.9 x 1074 Ms™":
[NOJo = 0.0050 M [02]0=0.0050 M
Initial rate = k[NO]%, [0, 10
_ (710x10* M~ 57)(0.0050 M)*(0.0050 M)
=89x107* Ms™ (tiall)
The procedure is the same for all four trials:

TRIAL  [NOJo (M) [02]0 (M) RATE (Ms™)

1 0.0050 0.0050 89 x 107
2 0.0050 0.0100 1.8 x107°
3 0.0200 0.0300 8.52x 107
4 0.0300 0.0300 1.92 x 107!
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First-order reactions are covered on pages 653—656 of PoC and explored further in
Examples 18-4 and 18-5.

21. The rate approximately doubles when the initial concentration of SO,Cl, is doubled.
It approximately triples when [SO,Cly]o is tripled, and it approximately quadruples when
[SO,CL]o is quadrupled. These observations are consistent with a rate law of the form
k[SO,Cl,].

(a) We can extract the rate constant observed in each trial by rearranging the first-order
equation

Rate = k{SO,Cl;]
to solve for k at ¢ = 0:

N initial rate
[SO,CL, ],

221 1078 Ms™!

_ -5 -1 .
0100 7 =221%x107 s (trial 1)

_439%x107° M
T 0200 M

=2195x107 5" (trial 2)

_ 660 107 Ms™
- 0300 M

=220x107° s (trial 3)

_ 880x107° Ms™
T 0400 M

=220x107 s (trial 4)

The result, averaged over all four trials, is £ =2.20 x 10 s™'. The corresponding
half-life is 3.15 x 10* s (equivalently, 8.75 h):

In2 0.6931

= —1 = 4
2= T = w10 1 oo X100

See Example 18-4, beginning on page R18.9 of PoC.

ALTERNATIVE METHOD: Equally valid would be to plot the initial rate versus
the initial concentration, [SO,Cl,]o, to obtain a straight line with slope equal to k. See
Figure 18.3. g

The graphical technique is also illustrated in Example 18-4.
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FIGURE 18.3 Plot of the data given in Exercise 21: initial rate of reaction versus the initial

concentration of SO,Cls. The slope of the line, 2.20 x 107 s", is equal to the rate constant k in the
first-order rate law: Rate = k[SO,Cl;].

(b) Insert the rate constant and initial concentration
k=220x10"s" [SO,Cly]o = 0.0150 M
into the exponentially decaying first-order profile:
[SO,CL); = [SO2Cla]o exp(—kt)
The calculation at ¢ = 3.00 h is typical:

3600 s

t =3.00hx =108x10%s

[SO,Cl, )re3n = (00150 M)exp[- (220107 s7')(1.08 x 10* s)] =00118 M

Results for 3, 6,9, 12, 15, and 18 hours are collected on the second page following.
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Test for First~Order Kinetics
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FIGURE 18.4  Plots of In [A] versus ¢ (top) and 1/[A] versus ¢ (bottom) for the data given in
Exercise 22. The semilog plot yields a straight line with a slope of =2.73 x 10 min™'. The
points in the lower plot do not fall on a straight line. (A = C4H,,04, glucose)
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TiME (h) [SO.CLy); (M)

0.00 1.50 x 107
3.00 1.18 x 107
6.00 9.33 x 107
9.00 735% 107
12.00 580 % 107
15.00 457 %107
18.00 3.61 x 107

22. We continue to exploit the logarithmic/exponential time dependence of any
first-order process:

In [A], = —kt + In [Alo

[A], = [Alo exp(—kr)

See pages 653-656 and Examples 18-4 and 18-5 in PoC. Second-order reactions are
illustrated in Example 18-6.

(a) Plot In [CeH120¢); versus £ to test for first-order dependence, and plot 1/[CsH1206]:
versus  to test for second-order dependence. The points corresponding to In [CeH120¢6]:
cluster narrowly around a straight line. Those corresponding to 1/ [CeH1206]; do not. See
Figure 18.4.

Hence the process is first order, not second order.

(b) Determine the slope of the line that best fits the points in the plot of In [CeH1206]:
versus f. A linear regression analysis (available as a function on many scientific
calculators) yields the value k= 2.73 x 10™* min~' for the rate constant:
Slope = -2.73 x 107 min™' =k
= _slope = ~(-2.73 x 107 min™") = 2.73 x 107 min™
The associated half-life is 2.54 x 10° min:

. In2 06931
2=k T 273% 107 min™

=254 %10° min

(c) Given the rate constant and initial concentration,
k=273 % 107 min™ [CeH1206)0 = 0.200 M

we solve for the concentration of glucose after 24 hours of exponential decay:

|
|
%
§;
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60 min

t=240hx =1.44 x 10> min

[CeH1304]1224n =[CsH,,04], exp(= kz)

= (0200 M)exp[-(273x10™* min™')(144 x 10° min}| = 0135 M

23. We consider another first-order reaction, the gas-phase decomposition of
chloroethane into ethene and hydrogen chloride:

CH;CH,Cl(g) —> HaC=CHy(g) + HCI(g) K720K)=1.5x 1075
(a) The rate at any time ¢ is directly proportional to the instantaneous concentration:
Rate(r) = k[CH;CH,Cl],
At ¢ =0, the concentration is specified as 0.100 A
Rate(0) = ([CH3;CH,Cl]o = (1.5 x 107*5s7')(0.100 M) = 1.5 x 107 M5

(b) The initial concentration decays exponentially with a rate constant equal
to 1.5x 107* 57"

[CH,CH,Cl], =[CH,CH,Cl], exp(~ k)
[CH;CH,,Cl],1005 = (0100 M)exp[-(15x 107 s7')(100 s)] =0.099 M

[CH3CH, Cll;yg00, = (0100 M)exp|-(15x 107 s )(1000 5)) = 0.086 M

[CH,CH,Cl],_10,0005 = (0100 M)expt— (15%107* 571)(10,000 s)] =0022 M

24. Methyl radicals are produced from ethane in a first-order reaction:
C2Hg(g) — 2CHi(g) k(700°C)=5.36x 107 5!
(a) The half-life is determined in the usual way:

L _In2 06931
27k T 536x107 g7

=129x10% s

See pages 653656 and Example 18-4 in PoC.
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(b) Write the first-order decay equation in the form
In [C,Hg], = —kt + In [C2Hglo

and solve for ¢:

1 1 [CyHel,
t= —-;(1n[C2H6], —~In[C,H¢lo) = TN
Inserting the specified concentrations,
[C;He], = 0.680 M [C>Helo = 1.000 M
we calculate an elapsed time of 720 s:
1. [C,H] 1 L0.680 M) )
=—-—1 =— 1 =720x10
%k PIC,H,l, | 536x10~ s \1000 M S

See Example 18-5 (in particular, the QUESTION/ANSWER dialogue on page R18.13).
(¢) The ratio of concentrations—and hence the elapsed time—is the same as in (b):

1360 M 0.680 M
2.000 M~ 1000 M

=0.680
t=720%x10%s

(d) Again, the same ratio and the same elapsed time:

1856 M 1360 M 0.680 M
2730 M 2000 M 1000 M

=0.680
t=720x10%s

25. The rate constant for a first-order process is inversely proportional to the half-life:

_In2 06931
" ty, 227 min

=305x102 min™"  (45°C)




604 Complete Solutions

Knowing both k and the initial concentration of N,Os (given as 1.00 M), we can then
calculate the rate of reaction at any time :

Rate() = k[N,0;], = k x [N,05], exp(- kt)

L — )

[N20Os],

The four computations are worked out explicitly below:
Rate(0) = (3.05x 107 min™") x (100 M)exp[~ (3.05x 1072 min“)(b min)|

=305x10"% M min™ ,
/S

Rate(10.0 min) = (305 x 10 min~") x (100 M)exp|~ (3.05x 102 min™')(100 min))|

=225%10"2 M min™

Rate(20.0 min) = (305x 107 min™") x (100 M)exp[- (3.05x 10 min™")(20.0 min)|

=166x107% M min™

Rate(30.0 min) = (305 10 min™") x (100 A)exp|-(3.05x 10 min™)(30.0 min)|

=122x10"% M min™!

26. The calculations here are analogous to those in Exercise 24. See Example 18-5 in PoC.
(a) Write the first-order decay equation in the form
In [FCIO,]; = =kt + In [FC10,]y

and solve for k:

1,_[FCIO, ],

1
ko=—— - -
t(ln[FClOZ], ln[FCloz]o) P n[FC102]0

Inserting the specified concentrations at 1 = 1127 s,
[FCIO,]; = 0.0354 M [FCIO,]o = 0.0600 M

we calculate a first-order rate constant of 4.68 x 10~ ™!
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1 [_Ii:lOﬂt 1 0.0354 M

-2 - 1
(B FCI0,], | 11275 0.0600 M

—468x107* s

I'he corresponding half-life is equal to (In 2)/k:

t _In2 06931
127 kT 468x107% s

- =148x10° s

(b) Similar. Given k (see above) and a pair of concentrations, solve for t:

[FCIOy], = 0.0200 M [FC10,]p = 0.0354 M

1. [FCIO,], _ 1 0.0200 M

== = 1 =122x10%s
S n[FCIOzlo 468x107* s 100354 M %

27. A first-order reaction need not occur in a single, unimolecular step. Unimolecular
decomposition is often preceded by a bimolecular collision of reactant A with some other
molecule M:

1. A+M 2 A'+M (bimolecular activation of A: fast)

2. A* — products (unimolecular decomposition of A*: slow)

Net: A — products

If the bimolecular step is fast, as suggested above, then the reaction order is set by the
rate-determining unimolecular step—the slow, first-order transformation of the energized
reactant (A*) into products. Thus the overall reaction is first order, but more than one
species is needed to bring it about. See pages 677-678 in PoC.

Second-order reactions are described on page 656 of PoC and illustrated in Example 18-6
(beginning on page R18.13).

28. We consider the gas-phase recombination of iodine radicals, a second-order process:

21(g) — L(g)
Rate = [I]* K25°C)=7.0x10° M~ s™ Mo=1.0x10" M
The reciprocal concentration, 1/[I], varies linearly with time:

1
.

m, -
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(a) The half-life under second-order kinetics is dependent on the initial concentration:

[y, = Ej]'g'
m;;z_z—[—%o—z ktyy +ﬁ;_0
fuz = k[i]o " (70x10° M sl" JLox 107 a) L4107
(b) Rearrange the second-order concentration dependence s
ﬁth- =kt + Eﬁ;
to solve for [I];, as demonstrated below for t=1.0x107%s:
[1]; = —oa0 LOx107 M =93x10™ M

T +1 (7.0x10° M7 57 )10x 107 10X 10 M)+ 1

The other calculations in the series are all done in the same way:

TIME (s) (11, (M)
0 1.0x 107
1.0x 107 9.3 x 107
50x 107 7.4 %107
1.0 x 1077 59x%x10™
501077 22x 107
1.0 x 107 1.3x 107

After 1.0 x 107 s, the concentration of I has fallen to 13% of its original value:

[1], ., 13x10* M
[—I]—x 100% = mx 100% = 13%
0 .
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¢) From the stoichiometry of the reaction, we know that one mole of I, is produced for

~ gvery two moles of I consumed:

21(g) — L(®)

Thus if {I]; denotes the concentration of I remaining at time ¢, then the concentration of 1

consumed must be

[}o — e

and the concentration of I simultaneously present must be

1
1 = E([I]o "[I]t)
ALl = 1.0 x 107 s, the value of [I]; is 4.4 % 107 M:

1
1,1 =-2-(1.0><1o-3 M-13x10" M)=44x10" M

ed in Section 14-8 and Example 14-8 of PoC. The

(d) Calculate AG® and then K, as describ
le C-16 of Appendix C (PoC, pages A85-A92):

(ree energies of formation are listed in Tab

AG[I(g)] =702 K] mol ™! AG?[IZ(g)] ~19.3 kJ mol™

Standard change in free energy:

21(g) — L(e)

AG° = 8G{[1, (@) - 246G [1(@)]

193 kJ 702 kJ
= x 1 mol|— 2 mol|=-1211kJ
mol mol

= _1211x10°J (per mole ofI,)
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Equilibrium constant:

~17x10%

K= (“ AG°] = exp| - (‘ 1211x10° J mol—l)
“EP TR )T (831457 mol ™ K1) 298 K)

The products are heavily favored thermodynamically. We expect all the I atoms to be
recombined once the reaction comes to equilibrium.

29. Repeat the calculations of the preceding exercise, this time starting with a tenfold
smaller initial concentration:

Mo=1.0x10"M

(a) Inversely proportional to [I]o, the first half-life increases by a factor of 10 relative to
its value in Exercise 28:

1 1
2, T (70%10° M s )10 107 M)

=14x10"%s

(b) Substitute [I]o = 1.0 x 10™* M into the equation

_ 1,
[, = ke[1], +1

to obtain [I], as a function of #:

TIME (s) [1], (M)
0 1.0x 107
1.0x 107 9.9 x 107
50x 107 9.7x 107
1.0 x 1077 9.3x 107
50x 1077 7.4 %107
1.0 x 1076 59x 107

After 1.0 x 107 s, the concentration of I has only fallen to 59% of its original value:

I 59x107° M
{_I_}t_xloo%=mx100%=s9%
0 Y X

Recall from the preceding exercise that this ratio is 13% when [IJo is 1.0 x 107 M. The
reaction goes slower now that the initial concentration is smaller.
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A slowdown of this sort, common to many kinds of reactions, is especially marked
for a second-order process. The rate is proportional to the square of the concentration:

Rate = [I]?

(¢) One mole of I is produced for every two moles of I consumed:

1 1 _ _ :
[1,]; =5([1]0-[1],)=5(1.0x10 P M-59x107 M)=21x10" M

(d) The reaction is slower (see part b above), but the value of the equilibrium constant
remains the same. Thermodynamic properties of the equilibrium state are determined solely
by fixed differences in state functions such as enthalpy, entropy, and free energy—not the
variable kinetics or mechanism of reaction.

30. We are given kinetic information about the gas-phase decomposition of NOBr into
NO and Br,:

2NOBr(g) - 2NO(g) + Bry(g)
Rate = {{NOB1}? k(10°C) = 0.80 M~ s [NOBr]y = 0.200 M
(a) The half-life is inversely proportional to the initial concentration:

i 1
Ly = —— = =6.25s5=63s 2 sigfi
" KINOBr], ~ (080 a1~ s™')(0200 1) (2 sig fig)

When ¢ = 15, the concentration of NOBy in the equation

1 1
_NoBrl, =¥ * [0,

falls to one-half its initial valye, See also Exercise 28 and Example 18-6.

(b) See Figure 18.5 on the next page. A plot of [NOBr], versus time,

[NOBr],

NOBr], = ————Ho__
[NOBr], K[NOBr], +1

0¢s not conform to a first-order decay profile. The functional dependence of [N OBr]; on
is something other than purely exponential:

[NOBr], # [NOBr]y exp(~kr)
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0-2 T Y T T T

0.18} 4
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[NoBr]
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FIGURE 18.5 A plot of [NOBr] versus time for the second-order reaction described in Exercise 30.
The concentration is measured in moles per liter, M.
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FIGURE 18.6 A plot of 1/[NOBr] versus time for the second-order reaction described in Exercise 30.
The reciprocal concentration is measured in units of M,
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(¢) See Figure 18.6. A plot of 1/[NOBr], versus time yields a straight line with slope k
and vertical intercept 1/[NOBr]y:

I
[NOBr], 4+ INOB,

(d) Substitute the instantaneous concentration

[NOB],
k([NOBr], +1

[NOBr], =
into the rate law
Rate(t) = k[NOBr]?

to obtain the rate at any time #:

[NOBx], )2

Rate(r) = k ( K[NOBr], +1

Results for 0's, 15 s, and 30 s are worked out below:

2
] o 0200 M '
Rate(0) = (080 M~ s )[(0,80 M~ 57 {05)(0200 M)+ 1:’

£32x1072 M5!

2
Rate(15s) = (0.80 M- s"l)[ 0200 M J

(080 a7 s)(155)(0200 41) +1

=28x107 M

2
Rate(30 s) = (0.80 M S-1)[ 0200 M :I

(080 47" 51)(305)(0200 A1) +1

=95x10™ M



