1999 Exam #2 – Chem 36 Exam Questions

1. The autoionization constant of water (K_w) is 1.139 x 10^{-15} at 0.00 °C and 9.614 x 10^{-14} at 60.00 °C.

 $2 H_2O (I) \leftrightarrows H_3O^+(aq) + OH^- (aq)$

- a. Calculate the enthalpy change (ΔH) for the autoionization of water.
- b. $K_w = 1.0 \times 10^{-14}$ at 25. °C. Calculate the standard molar free energy change (ΔG°) for the autoionization of water at 25. °C.
- c. What is the pH of pure water at 0 °C and at 60 °C?
- 2. At T=1200 °C, the reaction

$$P_4$$
 (g) \leftrightarrows 2 P_2 (g)

has an equilibrium constant K = 0.612.

- a. Suppose the initial partial pressures of P_4 and P_2 are both 2.00 atm. Will the reaction proceed to the right or to the left as equilibrium is approached? (Note: you must show your work to receive full credit!)
- b. Calculate the partial pressure of P₂ at equilibrium.
- c. If the volume of the system is then increased, will the partial pressure of P_2 increase or decrease? Explain, briefly.
- 3. The strongest acid that can exist in a solvent is the conjugate acid formed from the autoionization of that solvent. So, for example, the strongest acid that can exist in water is the hydronium ion (H_3O^+) .
 - a. Write the acid dissociation equilibrium reaction for H_3O^+ , the equilibrium constant (K_a) expression, and calculate the numerical value of K_a.
 - b. The approximate K_a values for HCl and HNO₃ are given on the table attached to this exam. In water, which of these acids is stronger? Explain.
 - c. What is the strongest acid that can exist in a solution of *liquid* ammonia?
 - d. What fraction of Acetic Acid will be undissociated in a *liquid* ammonia solution? (DO NOT do a calculation for this!)

- 4. As you all recall from lab, Aspirin is a weak acid (acetylsalicylic acid). When a 0.150 M solution of this acid is prepared, it has a pH of 4.69.
 - a. Calculate the K_a for acetylsalicylic acid.
 - b. Calculate K_b for the acetylsalicylate ion.
 - c. Calculate the pH of a 0.150 M solution of sodium acetylsalicylate.
- 5. Predict the direction favored in each of the following acid-base reactions. That is, for each reaction, indicate the direction (forward or reverse) that the reaction will tend towards. You may wish to make use of the K_a and K_b values tabulated for you on the formula page handed out with this exam.
 - a. $NH_4^+ + OH^- \leftrightarrows H_2O + NH_3$
 - b. $HSO_4^- + NO_3^- \leftrightarrows HNO_3 + SO_4^{2-}$
 - c. $H_2CO_3 + CO_3^{2-} \leftrightarrows HCO_3^{-} + HCO_3^{-}$
- 6. Circle the member of each of the following pairs that is the stronger acid and briefly explain your choice (based on molecular structure/bonding considerations).
 - a. HF or HCI
 - b. $HCIO_2$ or $HCIO_4$
 - c. CICH₂CH₂COOH or CH₃CHCICOOH
 - d. H_3PO_4 or H_2PO4^-

Extra Credit!!!

At 40 °C and 1.00 atm pressure, a gaseous monoprotic acid has a density of 1.05 g/L. After 1.85 g of this gas is dissolved in water and diluted to 450.0 mL, the pH is measured to be 5.01. Determine the K_a of this acid and use the provided table of K_a -values to identify it.