March 25,2002

-Exam \# 2: The Results
Exam \# 2: The Review
$>$ Questions for Problem Session?
$>$ We bite updates
-Chapter 16 solus (part 2)
>Chapter 15 assigned reading/probs
$>$ Quiz this Friday!

Exam \# 2 Results

Range:
76-149

Average:
119/150
(79\%)

Let's Add Some $\mathcal{N a O \mathcal { H }}$

- What would happen to the $p \mathcal{H}$ if we added 10.00 mL of $0.0100 \mathfrak{M} \mathfrak{N a O \mathcal { H }}$ to this son?

Two possible species to react with $O \mathcal{H}^{-}$:

What's X?

- Combine two reactions with Known values of \mathcal{K} to get \mathcal{K} for the unknown reaction:

$$
\begin{array}{ccc}
\mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathcal{H}_{2} \mathrm{O}(l) \leftrightarrows \mathcal{C H}_{3} \mathrm{COO}(a q)+\mathcal{H}_{3} \mathrm{O}^{+}(a q) & \mathcal{K}_{a} \\
O \mathcal{H}^{-}(a q)+\mathcal{H}_{3} \mathrm{O}^{+}(a q) \leftrightarrows \mathcal{H}_{2} \mathrm{O}(l)+\mathcal{H}_{2} O(l) & 1 / \mathcal{K}_{w}
\end{array}
$$

$\mathrm{CH}_{3} \operatorname{COOH}(a q)+O \mathcal{H}^{-}(a q) \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}(a q)+\mathcal{H}_{2} \mathrm{O}(\mathcal{l}) \quad \mathcal{K}$

$$
\mathcal{K}=\frac{\mathcal{K}_{Q}}{\mathcal{K}_{v v}}=\frac{1.76 \times 10^{-5}}{1.0 \times 10^{-14}}=\frac{1.76 \times 10^{9}}{1}
$$

General result for reaction of a we ak acid with a strong base

Huge!
Reaction is quantitative

Assume Complete Reaction

- Since Xis so large, assume reaction with $O \mathcal{H}$ - is quantitative:
$\mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}(a q)+\mathcal{H}_{2} O$ (l)
$\begin{array}{cccc}I & 1.00 \mathrm{mmol} & 0.100 \mathrm{mmol} & 1.00 \mathrm{mmol} \\ \mathrm{C} & -0.100 \mathrm{mmol} & -0.100 \mathrm{mmol} & +0.100 \mathrm{mmol}\end{array}$
$\mathcal{F} 0.90 \mathrm{mmol} \quad 0 \quad 1.10 \mathrm{mmol}$
Note: These are not equilibrium amounts!

