March 13,2002

$\sqrt{\text { Exam \# } 2}$
$\checkmark \mathcal{T O N} \mathcal{N G H}$!
$\checkmark 7 \mathrm{pm}$, Kalkin 001
\checkmark Demo on Friday!

Successive Approximations?

$\frac{x^{2}}{1.0 \times 10^{-1} \cdot x}=7.2 \times 10^{-4}$
$\frac{\left(x^{\prime}\right)^{2}}{1.0 \times 10^{-1}}=7.2 \times 10^{-4}$
$x^{\prime}=8.4853 \times 10^{-3}$

Assume: $\chi \ll 1.0 \times 10^{-1}$

First approximation
$\frac{\left(x^{\prime \prime}\right)^{2}}{1.0 \times 10^{-1}-8.4853 \times 10^{-3}}=7.2 \times 10^{-4} \quad$ 2nd approx

$$
p \mathcal{H}=\underline{2.09}
$$

SuccessfulSuccessive Approximations?

> Assess Assumptions:

1. $\left[\mathcal{H}^{+}\right] \ll 1.0 \times 10^{-1} \mathcal{M}$
close ... But should be 100 x difference
2. $\frac{\text { We can ignore }\left[\mathcal{H}^{+}\right]_{\mathcal{H} 2 \mathrm{O}}}{\left.\sqrt{\left[\mathcal{H}^{+}\right]>}>\mathcal{H}^{+}\right]_{\mathscr{H} 2 \mathrm{O}}}$
$>\frac{\text { When do we include }\left[\mathcal{H}^{+}\right]_{\mathcal{H} 2} \text { ? }}{\sqrt{ } \text { Dilute solutions }}$?
\checkmark Very weak $\left(\mathcal{K}_{a}<10^{-8}\right)$ acids

What about Bases?

$>$ Treat Bases just like acids except:
\checkmark Use \mathcal{K}_{6} instead of \mathcal{K}_{a}
\checkmark Calculate [$O \mathcal{H}{ }^{-}$] first, cone rt to $p O \mathcal{H}$
\checkmark Calculate $p \mathcal{H}$ from $p O \mathcal{H}$
\checkmark Examples
\checkmark pH of $0.10 \mathcal{M} \mathcal{N a O H}$ (strong base)
$\checkmark p \mathcal{H}$ of $0.10 \mathcal{M} \operatorname{Me} t$ fylamine (weak base) $\left(\mathcal{H}_{3} \mathcal{N H}_{2}-\mathcal{K}_{6}=4.38 \times 10^{-4}\right)$

Here's Another One!

$>$ Calculate the $p \mathcal{H}$ of a $0.10 \mathcal{M} \mathscr{K C N}$ solution $\left(\mathcal{K}_{a}(\mathcal{H C N})=6.2 \times 10^{-10}\right)$.

What happens to $\mathcal{K C N}$ in water?

$$
\mathcal{K C N} \rightarrow \mathcal{K}^{+}+\mathcal{C N}
$$

conjugate base of $\mathcal{H C N}$
So, the pH-determining species is a base: $\mathcal{C N}$ Find \mathcal{K}_{θ} for $\mathcal{C N}: \mathcal{K}_{Q} \mathcal{K}_{6}=\mathcal{K}_{w v} \quad \mathcal{K}_{6}=\mathcal{K}_{w w} / \mathcal{K}_{a}$

$$
\mathcal{K}_{6}=\frac{1.0 \times 10^{-14}}{6.2 \times 10^{-10}}=1.613 \times 10^{-5}
$$

ICE Table

| | $\mathcal{C N}(a q)+\mathcal{H}_{2} O(l) \leftrightarrows$ | $\mathcal{H C N}(a q)+O \mathcal{H}^{-}$ | $(a q)$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| I | 0.10 | 0 | 0 |
| \mathcal{C} | $-\chi$ | $+\chi$ | $+\chi$ |
| \mathcal{E} | $0.10-\chi$ | χ | χ |

$$
\text { Substituting: } \quad \mathcal{K}_{6}=\frac{[\mathcal{H C N}][O \mathcal{H}]}{[C \mathcal{N} \cdot]}=1.613 \times 10^{.5}
$$

