March 11, 2002

$\sqrt{\text { Exam \# } 2}$

$\checkmark 7 \mathrm{pm}$, Kalkin 001
\checkmark Exam \# 2 info page now up to date!
\checkmark Monday (today!) problem session
3:00 - 4:00 pm, A531 Cook
\checkmark SGA evaluation test program!
\checkmark Email your comments to me anonymously!
\checkmark Available for 24 fours (March 12 th only)
\checkmark See link on course we bpage

pH of S trong $\mathcal{A c i d}$ solutions

Simple - Strong acids dissociate completely:

$$
\mathcal{H C l}(a q) \rightarrow \mathcal{H}^{+}(a q)+\mathcal{C}(a q)
$$

So, what's the $p \mathcal{H}$ of a $0.10 \mathcal{M} \mathcal{H C l}$ solution?

How about $1.0 \times 10^{-10} \mathfrak{M} \mathcal{H C l}$?

As before:

$$
\begin{aligned}
{\left[\mathcal{H}^{+}\right]=\mathcal{C}_{\mathcal{H C l}}=} & 1.0 \times 10^{-10} \mathfrak{M} \\
& p \mathcal{H}=10.00
\end{aligned}
$$

Ooops!There are $\mathcal{T} \mathcal{W O}$ sources of \mathcal{H}^{+}:

$$
\begin{aligned}
& \mathcal{H C l}(a q) \rightarrow \mathcal{H}^{+}(a q)+\mathcal{C l}(a q) \\
& \text { and } \\
& \mathcal{H}_{2} O(l) \leftrightarrows \mathcal{H}^{+}(a q)+O \mathcal{H}^{-}(a q)
\end{aligned}
$$

$\left[\mathcal{H}^{+}\right]$from two reactions

So:

$$
\begin{aligned}
& {\left[\mathcal{H}^{+}\right]=\left[\mathcal{H}^{+}\right]_{\mathcal{H C l}}+\left[\mathcal{H}^{+}\right]_{\mathcal{H} 2 \mathrm{O}}} \\
& {\left[\mathcal{H}^{+}\right]=\mathcal{C}_{\mathcal{H C l}}+\left[O \mathcal{H}^{-}\right]} \\
& {\left[\mathcal{H}^{+}\right]=\mathcal{C}_{\mathcal{H C l}}+\mathcal{K}_{q u} /\left[\mathcal{H}^{+}\right]}
\end{aligned}
$$

It's a quadratic! Rearranging:

$$
\left[\mathcal{H}^{+}\right]^{2}-\mathcal{C}_{\mathcal{H C l}^{2}}\left[\mathcal{H}^{+}\right]-\mathcal{K}_{v}=0
$$

On to the solution!

$$
\left[\mathcal{H}^{+}\right]^{2}-{\underset{\sim}{\mathcal{H C l}}}_{\mathcal{C}_{1.0}\left[\mathcal{H}^{+}\right]-0^{-10}}^{\mathcal{K}_{\varepsilon v}=0}
$$

Solving for $\left[\mathcal{H}^{+}\right]$, give s :

$$
\begin{aligned}
& {\left[\mathcal{H}^{+}\right]=1.00050 \times 10^{-7} \mathcal{M} \left\lvert\, \begin{array}{l}
\begin{array}{l}
\checkmark \text { Autoionization of } \\
\text { water is the major } \\
\text { source of } \mathcal{H}^{+} \text {in this } \\
\text { solution }
\end{array} \\
n \mathcal{H}=699978=700
\end{array}\right.}
\end{aligned}
$$

$$
p \mathcal{H}=6.99978=\underline{7.00}
$$

Weak Acids - pH Calculation

> If we have \mathcal{K}_{a} and solution concentration, this is just a straightforward equilibrium problem

Example: Calculate the pH of a $1.0 \times 10^{-1} \mathcal{M} \mathcal{H F}$ solution $\left(\mathcal{K}_{a}=7.2 . X 10^{-4}\right)$.

First, identify the major sources of \mathcal{H}^{+}:

Apply ICE

$$
\overline{\mathcal{H F}(a q)} \leftrightarrows \mathcal{H}^{+}(a q)+\mathcal{F}(a q)
$$

I $1.0 \times 10^{-1} \mathcal{M}$
c

$-x$	$+x$

E $1.0 \times 10^{-1}-x \quad x \quad x$
Recall: $\quad \mathcal{K}_{a}=\underline{\left[\mathcal{H}^{+}\right][\mathcal{F}]}=7.2 \times 10^{-4}$

$$
[\mathcal{H F}]
$$

Substituting:

$$
\frac{x^{2}}{1.0 \times 10^{-1}-x}=7.2 \times 10^{-4}
$$

Quadratic Formula?

Rearranging:

$$
x^{2}+7.2 \times 10^{-4} x-7.2 \times 10^{-5}=0
$$

Substituting:

$$
x=\frac{-7.2 \times 10^{-4} \pm 1.6986 \times 10^{-2}}{2}
$$

Finally: $\quad x=8.1329 \times 10^{-3}=\left[\mathcal{H}^{+}\right]$

$$
p \mathcal{H}=2.0897=\underline{2.09}
$$

Successive Approximations?

$$
\frac{x^{2}}{1.0 \times 10^{-1}-x}=7.2 \times 10^{-4}
$$

$$
\begin{gathered}
\frac{\left(x^{\prime}\right)^{2}}{1.0 \times 10^{-1}}=7.2 \times 10^{-4} \\
x^{\prime}=8.4853 \times 10^{-3}
\end{gathered}
$$

$$
\frac{\left(x^{\prime \prime}\right)^{2}}{1.0 \times 10^{-1}-8.4853 \times 10^{.3}}=7.2 \times 10^{-4} \quad \underline{2 n d ~ a p p r o x}
$$

$$
x^{\prime \prime}=8.11730 \times 10^{-3} \quad p \mathcal{H}=2.09
$$

$$
4.5 \% \text { change - S top! }
$$

