March 1, 2002

✓Old Exam #2 questions posted

✓ Quiz today!

Example using K_c

$$\begin{split} & \mathsf{N}_2 \; (\mathsf{g}) + 3\mathsf{H}_2 \; (\mathsf{g}) \leftrightarrows 2\mathsf{NH}_3 \; (\mathsf{g}) \quad \mathsf{K} = 1.65 \; \mathsf{x} \; 10^{-2} \; (\mathsf{at} \; 300 \; \mathsf{K}) \\ & \diamond \mathsf{Calculate the } \underline{equilibrium \; concentrations} \; \mathsf{of the gases if we} \\ & \mathsf{start with:} \\ & [\mathsf{N}_2] = 0.500 \; \mathsf{mol/L} \qquad \mathsf{n}_{\mathsf{N}2} = 2.0 \; \mathsf{L} \; (0.500 \; \mathsf{mol/L}) = 1.00 \; \mathsf{mol} \\ & [\mathsf{H}_2] = 0.500 \; \mathsf{mol/L} \qquad \mathsf{n}_{\mathsf{H}2} = 2.0 \; \mathsf{L} \; (0.500 \; \mathsf{mol/L}) = 3.00 \; \mathsf{mol} \\ & [\mathsf{H}_2] = 1.500 \; \mathsf{mol/L} \qquad \mathsf{n}_{\mathsf{H}2} = 2.0 \; \mathsf{L} \; (1.500 \; \mathsf{mol/L}) = 3.00 \; \mathsf{mol} \\ & \mathsf{Total Volume} = 2.0 \; \mathsf{L} \\ & \mathsf{Converting K \; to \; \mathsf{K}_c:} \\ & \mathsf{K}_c = \mathsf{K}_p / (\mathsf{RT})^{\Delta \mathsf{n}} = \underbrace{1.65 \; \mathsf{x} \; 10^{-2}}_{(0.08206)(300)]^{-2}} = 10.0 = \mathsf{K}_c \\ & [(0.08206)(300)]^{-2} \end{split}$$

1

ICE Time!				
$N_2(g) + 3H_2(g) \leftrightarrows 2NH_3(g)$				
Initial mol	1.00 mol	3.00 mol	0 mol	
Change	- X	-3x	+2x	_
Equilib mol	1.00 - x	3.00 - 3x	2x	
Equilib conc	2.0 <u>1.00 - x</u>	<u>3.00 - 3x</u> 2.0	<u>2x</u> 2.0	
				3

Chem 36 Spring 2002

