I anuary 30, 2002

- Problem Set Solutions:
- Chapters 9, 11 and 15 now online
-Revised Office Hours:
- Monday, 1:30-2:30
- Tue say, 2:00-3:00
- Friday, 1:30-2:30 (except 2/8)
- Lab starts $\mathcal{I O D A P}$!

Effect on Vapor Pressure

- What happens to the vapor pressure of solvent $\mathcal{A}\left(\mathcal{P}_{\mathfrak{A}}\right)$ as solute concentration increases?

Raoult's Law

For an Ideal Solution:

In an ide al solution: all IM forces are of a similar magnitude - Negative Deviations: solute-sotvent IM forces too strong -Positive De viations: solute -solvent IM forces too we a k_{3}

What if both solute and

 solvent are volatile liquids?Raoult's Law applies to both:

$$
\begin{aligned}
& \left.\mathcal{P}_{\mathcal{B}}=\chi_{\mathcal{B}} \mathscr{P}_{\mathcal{B}} \text { (for volatile solute } \mathcal{B}\right) \\
& \chi_{\mathcal{A}}+\chi_{\mathcal{B}}=1 \text { (for a 2-component mix) }
\end{aligned}
$$

\mathcal{N} ow it gets interesting!
S suppose we have a solution with a composition such that: $\quad \boldsymbol{\chi}_{\mathcal{A}}=\boldsymbol{\chi}_{\mathcal{B}}=0.5$

Question: What are $\chi_{\mathcal{A}}$ and $\chi_{\mathcal{B}}$ in the vapor if \mathcal{A} is 2χ as volatile as $\mathcal{B}\left(\mathcal{P}_{\mathcal{A}}^{o}=2 \mathcal{P}_{\mathcal{B}}^{o}\right)$?

The Solution (or is it the vapor?!)

Why so interesting?

$>$ Notice: the vapor is enriched in the more volatile component (A)

So, to separate a mixture of \mathcal{A} and \mathcal{B} :
\checkmark Collect and condense vapor above liquid
\checkmark Repeat process with condensed vapor
\checkmark The new vapor phase will be: $\chi_{\mathcal{A}}=0.80$
\checkmark Repeat, repeat, repeat!

- Perform at or near boiling point to maximize amounts of compounds in vapor phase (distillation)

Boiling Point Ele vation

Freezing Point Depression

How Depressed?

$>\mathcal{K}_{f}$ is us ually larger than \mathcal{K}_{6} :

- $\Delta \mathcal{T}_{f} \approx 2{ }^{\circ} \mathrm{C}$ for 1 m soln in water
- $\Delta \mathcal{T}_{6} \approx 32{ }^{\circ} \mathrm{C}$ for 1 m soln in CCl_{4}

Ulses for $\mathcal{F P}$ Depression:

- Melting Ice
- Auto Antifreeze
- Solvent Purification
- Molecular Weight Determination

$\mathcal{M W}$ Determination via FP De pression

\checkmark Add a known amount of compound to known amount of solvent

- Weigh compound and solvent accurately
- Ulse solvent with a large \mathcal{K}_{f}
\checkmark Me asure $\Delta \mathcal{T}_{f}$
\checkmark Determine molality: $\Delta \mathcal{T}_{f}=\mathcal{K}_{f} m$
\checkmark Ulse m to solve for $n_{c m p d}: m=n_{c m p d} / k g$ solve $n t$
\checkmark Finally, calculate $\mathcal{M W}: \mathcal{M W}=\boldsymbol{g}$ cmpd/ncmpd

