$02 / 27 / 02$

- Exam \# 2: 2 we ks from today!
- Exam \# 2 info page now online
- Old Exam \# 2 questions coming later today
-Chapter 16: assigned problems now online

Premed?
$>\mathcal{D e}$ mo today . . Quiz on Friday

Effect of $A d d i n g$ an Inert Gas

$>$ Suppose we add some Argon to a system at equilibrium ... Will that change the position of equilibrium?
\rightarrow The Simple Answer: \mathcal{N} (o!
\checkmark The partial pressures of the reactants and products are not affected $(Q=\mathcal{K})$
$\frac{>\text { The Re al Answer: It De pends! }}{\checkmark \text { Constant Volume or Constant Pressure? }}$

Added Inert Gas: Constant Volume

\rightarrow If volume is unchanged upon addition of gas, then $\mathcal{P}_{\text {total }}$ must increase:

Before: $\quad P_{\text {total }}=P_{\text {reactants }}+P_{\text {products }}$
After: $\quad P_{\text {total }}=\mathcal{P}_{\text {reactants }}+\mathcal{P}_{\text {products }}+\mathcal{P}_{\text {gas }}$
$>$ Partial Pressures of reactants and products are unchanged:

$$
\mathcal{N} \text { o S Gift }
$$

Added Inert Gas:
 Constant Pressure

$>$ If pressure is unchanged upon addition of gas, then volume must increase.

Before: $\quad \mathcal{P}_{\text {total }}=\mathcal{P}_{\text {reactants }}+\mathcal{P}_{\text {products }}$
After: $\quad \mathcal{P}_{\text {total }}=\mathcal{P}_{\text {reactants }}+\mathcal{P}_{\text {products }}+\mathcal{P}_{\text {gas }}$
$\mathcal{B U I}: \mathcal{P}_{\text {total }}($ before $)=\mathcal{P}_{\text {total }}($ after $)$
Partial pressures of reactants and products must decrease in order to keep total pressure constant

Reaction Can Shift

Effect of Temperature

Treat feat as a:
Product (for exothermic process)
Reactant (for endothermic process)
Example:

Manipulating K's and Equilibria

What happens to Kwhen we add/subtract/reverse equilibria?

Reverse Reaction:

1) $\mathcal{A} \leftrightarrows \mathcal{B} \quad \mathcal{K}_{1}=\mathcal{P}_{\mathcal{B}} / \mathcal{P}_{\mathcal{A}}$
2) $\mathcal{B} \leftrightarrows \mathcal{A} \quad \mathcal{K}_{2}=\mathscr{P}_{\mathfrak{A}} / \mathcal{P}_{\mathcal{B}}=1 / \mathcal{K}_{1}$

$\mathfrak{A d d i n g}$ Equilibria

Let's add these two reactions:

1) $\mathcal{A}+\mathcal{B} \leftrightarrows \mathcal{C}$
$\mathcal{K}_{1}=\frac{\mathcal{P}_{C}}{\mathcal{P}_{\mathcal{A}} \mathcal{P}_{\mathcal{B}}}$
$\mathcal{K}_{2}=\underline{\underline{P}}_{\mathcal{E}} \underline{\mathcal{P}}_{\mathcal{B}}$
Add Runs = Multiply K's $\mathcal{P}_{\mathcal{C}} \mathcal{P}_{\mathcal{D}}$
2) $\mathcal{A}+\mathscr{B}+\varnothing(\mathcal{D} \leftrightarrows \not \subset+\mathcal{E}+\not B$

$$
\mathcal{A}+\mathcal{D} \leftrightarrows \mathcal{E}
$$

$$
\begin{aligned}
& \mathcal{K}_{3}=\mathcal{K}_{1} \mathcal{K}_{2} \\
&= \underline{\mathcal{P}}_{\mathcal{C}} \mathcal{P}_{\mathcal{E}} \underline{\mathcal{P}}_{\mathcal{R}}=\frac{\mathcal{P}_{\mathcal{E}}}{\mathcal{P}_{\mathfrak{A}} \mathcal{P}_{\mathcal{R}} \mathcal{P}_{\mathcal{C}} \mathcal{P}_{\mathcal{D}}} \mathcal{P}_{\mathcal{A}} \mathcal{P}_{\mathcal{D}}
\end{aligned}
$$

$\mathcal{K}_{\text {p }}$ versus $\mathcal{K}_{\varepsilon}$

What if gas amounts are expressed as concentrations (mo ls)?

- $\mathcal{K}_{p}=$ thermodynamic K(atm)
- $\mathcal{K}_{e}=$ concentration - based equilib constant

Ideal Gas Law: $\quad \mathcal{P}=(n / \mathcal{V}) R \mathcal{T}$
It can be shown that:

