$>$ Questions for today's Problem Session?
$>\mathcal{D e m o}$ We die say!
$>$ Quiz Friday!

The ICE Method

$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}(\mathrm{g}) \leftrightarrows\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}(\mathrm{g})+\mathcal{H}_{2}(\mathrm{~g})$

Initial: 0.3086 atm

Change: \qquad

χ
\qquad
χ

Plug values into equilibrium constant expression:

$$
\mathcal{K}=\left(\mathcal{P}_{\text {act }}\right)\left(\mathcal{P}_{\mathscr{H} 2}\right) /\left(\mathcal{P}_{\text {isopro }}\right)
$$

Solving for x

Solving for χ (continued)

Substituting into the quadratic equation:
$x=\frac{-0.444 \pm\left[(0.444)^{2}-4(1)(-0.13702)\right]^{1 / 2}}{2(1)}$
$>$ Rearranging and solving:

$$
x=-0.444 \pm 0.863259=0.20963
$$

Relating x to pressures

- Substitute x back into equilibrium pressure expressions:

$$
\begin{aligned}
& \mathcal{P}_{\text {acetone }}=\mathcal{P}_{\mathcal{H} 2}=\chi=0.210 \text { atm } \\
& \mathcal{P}_{\text {isopropanol }}=0.3086-\chi=0.099 \mathrm{~atm}
\end{aligned}
$$

$>$ What is the \%-dissociation of isopropanol?

$$
\begin{aligned}
\%-\text { dis soc } & =\left(\mathcal{P}_{\text {reacted }} / \mathcal{P}_{\text {initial }}\right) \times 100 \\
& =(x / 0.3086) \times 100 \\
& =(0.20963 / 0.3086) \times 100=67.9 \%
\end{aligned}
$$

Disturbing Equilibrium

What happens when we disturb a system at equilibrium?

Le Cflatelier's Principle:

Reaction will proceed so as to counteract the effects of the disturbance

Let's look at the effects of changing:

- Amount of a product or reactant
- Volume

Changing \mathcal{A} mounts of Reactant or Product

Back to our example reaction:
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}(g) \leftrightarrows\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}(g)+\mathcal{H}_{2}(g)$
$>$ Remove a product: rn shifts to the right
$>$ Add a reactant: rxnshifts to the right
-Remove a reactant: rxnshifts to the left
$>$ Add a product: rxnshifts to the left

\mathcal{N} ow, Quantitatively

\square We start at our established point of equilibrium:
$\mathcal{P}_{\text {acetone }}=\mathcal{P}_{\mathcal{H} 2}=\underline{0.210 \mathrm{~atm}}$
$\mathscr{P}_{\text {isopropanol }}=\underline{0.099 \mathrm{~atm}}$
$>$ What will the equilibrium pressures become IF we add \mathcal{H}_{2} so that:

$$
\mathcal{P}_{\mathscr{H} 2}=0.300 \mathrm{~atm} ?
$$

I CE Again

Solve for x

$$
\mathcal{K}=\frac{(0.210-x)(0.300-x)}{0.0990+x}=0.444
$$

From the quadratic formula, we get:

$$
x=0.0204
$$

Substituting into ICE equilibrium expressions, gives:

$\mathcal{P}_{\text {isopropanol }}=0.0990+\chi$	$=0.119$ atm $=\mathcal{P}_{\text {isopropanol }}$
$\mathcal{P}_{\text {acetone }}=0.210-\chi$	
$\mathcal{P}_{\mathcal{H} 2}=0.300-\chi$	$=0.190$ atm $=\mathcal{P}_{\text {acetone }}$
$0.280 \mathrm{~atm}=\mathcal{P}_{\mathcal{H} 210}$	

Changing Volume

\rightarrow Let's see what happens if we fratve the volume of our reaction vessel:
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}(g) \leftrightarrows\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO} \quad(\mathrm{g})+\mathcal{H}_{2}(\boldsymbol{g})$
At equilibrium:

$$
0.119 \text { atm } \quad 0.210 \mathrm{~atm} \quad 0.280 \mathrm{~atm}
$$

Halving the volume will double the pressures:
0.238 atm 0.420 atm 0.560 atm

What happened to Q ?

Equilibrium Check!

$$
\begin{gathered}
Q=\frac{(0.420)(0.560)}{0.238}=0.988 \\
Q=0.988>0.444=\mathcal{K}
\end{gathered}
$$

Too much product, so reaction shifts:
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}(g) \leftrightarrows\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}(g)+\mathcal{H}_{2}(\mathcal{g})$
Shift

Volume Change: In General

Changing the volume will change the partial pressures of allgases
\checkmark If the number of moles of gas products or reactants is not the same, then the change in pressure will be different for the products and reactants (and $Q \neq \mathcal{K}$)
\checkmark Equilibrium shifts to decrease the overall pressure and the reaction shifts to the side with the fewest number of moles of gas (until $Q=\mathcal{K}$).
\checkmark What if $\boldsymbol{\Delta} n_{\text {gas }}=0$? No Skift! $(Q=\mathcal{K})$.

