$02 / 20 / 02$

Exam Solution Key now online Θ
Exams not graded yet Θ
Chapter 12 problems now assigned \otimes
Chapter 12 solutions now online ©

What is Kat 1000 K?

Here's what we know:

$$
\begin{array}{ll}
\mathcal{K}_{1}=7.71 \times 10^{2} & \mathcal{K}_{2}=? \\
\mathcal{T}_{1}=298.15 \mathcal{K} & \mathcal{T}_{2}=1000 . \mathcal{K}
\end{array}
$$

Invoking van't Hoff:

$$
\begin{gathered}
\mathcal{L n}\left(\mathcal{K}_{2} / \mathcal{K}_{1}\right)=-\left(\Delta \mathcal{H}^{0} / \mathcal{R}\right)\left(1 / \mathcal{I}_{2}-1 / \mathcal{T}_{1}\right) \\
\mathcal{L n}\left(\mathcal{K}_{2} / \mathcal{K}_{1}\right)=-(-46,110 \mathrm{~g} / 8.3145 \mathrm{~g} / \mathrm{mol}-\mathcal{K})[1 / 1000-1 / 298.15] \\
\mathcal{L n}\left(\mathcal{K}_{2} / \mathcal{K}_{1}\right)=\left(5.5457 \times 10^{3}\right)\left[-2.354 \times 10^{-3}\right]=-13.0547 \\
\mathcal{K}_{2} / \mathcal{K}_{1}=e^{-13.0547}=2.1399 \times 10^{-6} \\
\mathcal{K}_{2}=\left(2.1399 \times 10^{-6}\right)\left(7.71 \times 10^{2}\right)=1.6502 \times 10^{-3}=\frac{1.7 \times 10^{-3}}{2}
\end{gathered}
$$

Equilibrium

> Chem 36
> Spring 2002

The Equilibrium Condition

$>$ Recall: a system is at equilibrium when $\Delta \mathcal{G}=0$

- No net driving force for process in either direction
$>$ Equilibrium is a dynamic condition
- Reaction fils not stopped
- No net change in the amounts of products or reactants

Rand Equilibrium Position

Case 1: Kvery small $(\mathbb{K} \ll 1)$

$$
\mathcal{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathcal{N} O(\mathrm{~g})
$$

$$
\mathcal{K}=\frac{\left(\mathcal{P}_{\mathfrak{X O}}\right)^{2}}{\left(P_{\mathcal{V}_{2} 2}\right)\left(\mathcal{P}_{\mathrm{O} 2}\right)}=1 . \times 10^{.30} \text { at } 25^{\circ} \mathrm{C}
$$

\mathcal{A} equilibrium, do reactants or products predominate?

Calculate it!

Suppose we know that:

$$
\begin{gathered}
\mathcal{P}_{\mathcal{N} 2}=\mathcal{P}_{\mathrm{O} 2}=1.0 \text { atm (at equilibrium) } \\
\text { Calculate } \mathcal{P}_{\mathcal{N} O}
\end{gathered}
$$

Solve equilibrium constant expression for $\mathscr{P}_{\mathfrak{r} \text { (}}$:
$\left(\mathcal{P}_{\mathcal{V} O}\right)^{2}=\mathcal{K} \mathcal{P}_{\mathcal{N} 2} \mathcal{P}_{O 2}=\left(1 . \chi 10^{-30}\right)(1.0)(1.0)$
$\left(P_{\text {X OO }}\right)^{2}=1 . \chi 10.30$
$\mathcal{P}_{\mathfrak{X}(O}=\left(1 . X 10^{-30}\right)^{1 / 2}=\underline{1 \cdot x 10^{-15} \mathrm{~atm}}$

Reverse it!

Case 2: Kverylarge (K>> 1)

$$
2 \mathcal{N O}(g) \leftrightarrows \mathcal{N}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g})
$$

$$
\mathcal{K}=\underline{\left(\mathcal{P}_{\mathfrak{N} 2}\right)\left(\mathcal{P}_{O 2}\right)}=1 . X 10^{30} \text { at } 25^{\circ} \mathrm{C}
$$

$$
\left(\mathcal{P}_{\mathfrak{N O}}\right)^{2}
$$

\mathcal{A} t equilibrium, products predominate

A Third Case

$$
\begin{array}{ll}
\text { Case 3: } & \mathcal{K} \approx 1 \\
& \mathcal{N}_{2} O_{4}(g) \leftrightarrows 2 \mathfrak{N} O_{2}(g)
\end{array}
$$

$$
\mathcal{K}=\underline{\left(\mathcal{P}_{\mathcal{N O} 2}\right)^{2}}=11 . \text { At } 100^{\circ} \mathrm{C}
$$

$$
\mathcal{P}_{\mathfrak{N N O}_{2}}
$$

$\mathcal{H e r e}$, we expect to have similar amounts of products and reactants

Calculate!

Suppose we know that:

$$
\begin{gathered}
\mathcal{P}_{\mathfrak{N} 2 \mathrm{O} 4}=1.0 \text { atm (at equilibrium) } \\
\text { Calculate } \mathcal{P}_{\mathfrak{N O 2}}
\end{gathered}
$$

Solve equilibrium constant expression for $P_{2(02}$:
$\left(P_{\mathcal{X O} 2}\right)^{2}=\mathcal{K} P_{\mathcal{P}_{(2 \mathrm{O} 4}}=(11).(1.0)$
$\left(P_{\mathrm{NO}_{2}}\right)^{2}=11$.
$P_{\mathrm{NO}_{2}}=(11 .)^{1 / 2}=3.3 \mathrm{~atm}$

Are we there yet?

$>\mathcal{H o w}$ do we know whether a system is at equilibrium?
$>$ Evaluate $\Delta \mathcal{G}($ lots work! $): \Delta \mathcal{G}=\Delta \mathcal{G}^{o}+\mathcal{R T} \mathcal{L n} Q$
$>$ Calculate Q and compare with \mathcal{K}

1. If $\underline{Q}<\mathcal{X}: ~ \Delta \mathcal{G}$ is negative ($r \chi n$ proceeds forward)
2. If $\underline{Q}>\mathcal{K} ; \Delta \mathcal{G}$ is positive (rn proceeds in reverse)
3. If $\underline{Q}=\mathcal{K} ; \quad \Delta \mathcal{G}=0$ (system is $\mathfrak{A T}$ equilibrium)

Example

$$
\begin{gathered}
\mathrm{CO}_{2}(g)+\mathcal{H}_{2}(g) \leftrightarrows \mathcal{C O}(g)+\mathcal{H}_{2} O(g) \\
\mathcal{K}=0.64 \text { at } 900 . \mathcal{K}
\end{gathered}
$$

- If we have 1 atm of each gas, in which direction will reaction proceed spontaneously?
$Q=\frac{\mathcal{P}_{\mathrm{CO}} \mathcal{P}_{\mathcal{H} 2 \mathrm{O}}}{\mathcal{P}_{\mathrm{CO} 2} \mathcal{P}_{\mathcal{H} 2}}=\frac{(1)(1)}{(1)(1)}=1>0.64=\mathcal{K}$
$Q>\mathcal{K}:$ Reverse Rxn is Spontaneous

Example: Calculating K

$$
\mathrm{CH}_{4}(\mathfrak{g})+\mathcal{H}_{2} \mathrm{O}(\mathrm{~g}) \leftrightarrows \mathrm{CO}(\mathrm{~g})+3 \mathcal{H}_{2}(\mathrm{~g})
$$

\mathcal{A} t equilibrium (at 600 K):
$\begin{array}{lllll}\text { P, atm: } & 1.40 & 2.30 & 1.60 & 7.1 \times 10^{-3}\end{array}$
Into the equilibrium constant expression:

$$
\begin{gathered}
\mathcal{K}=\frac{\left(P_{\mathcal{C O}}\right)\left(P_{\mathcal{H} 2}\right)^{3}}{\left(P_{\mathcal{H} 4}\right)\left(\mathcal{P}_{\mathcal{H} 2 O}\right)}=\frac{(1.60)\left(7.1 \times 10^{-3}\right)^{3}}{(1.40)(2.30)} \\
\mathcal{K}=1.8 \times 10^{-7}
\end{gathered}
$$

