Fe Gruary 15, 2002

-Exam \# 1: Solutions key will be online this weekend
-Chapter 12: Assigned problems will appear online later today

- Olive rsity Holiday: Monday, 2/18 (Happy Presidents 'Day!)

Effect of Temperature on \mathcal{K}

- $\Delta \mathcal{G}$ is temperature dependent, so:
$\underline{\mathcal{A} t \mathcal{I}_{1}}: \quad \Delta \mathcal{G}^{o}{ }_{1}=\Delta \mathcal{H}^{0}-\mathcal{T}_{1} \Delta \mathcal{S}^{o}=-\mathcal{R I}_{1} \mathfrak{L n} \mathcal{K}_{1}$
Solve for $\Delta S^{\circ}: \quad \Delta S^{0}=\mathcal{R L n} \mathcal{K}_{1}+\Delta \mathcal{H}^{\circ} / \mathcal{T}_{1}$
$\underline{\mathcal{A} t \mathcal{I}_{2}}: \quad \Delta S^{o}=\mathcal{R} \operatorname{Ln}_{\mathcal{K}_{2}}+\Delta \mathcal{H}^{0} / \mathcal{I}_{2}$
Combine, collect terms, rearrange:

$$
\mathcal{L n}\left(\mathcal{K}_{2} / \mathcal{K}_{1}\right)=-\left(\Delta \mathcal{H}^{0} / \mathcal{R}\right)\left(1 / \mathcal{T}_{2}-1 / \mathcal{T}_{1}\right)
$$

Van't Hoff
Endothermic: Kincreases with increasing temp
Equation Exothermic: Kdecreases with increasing temp

Clausius -Clapeyron Revisited

Recall, at any temperature \mathcal{T} :

$$
\Delta \mathcal{H}^{o}-\mathcal{T} \Delta \mathcal{S}^{o}=-\mathcal{R} \mathcal{T} \mathcal{L n K}
$$

Now, solve for Ln K

$$
\mathfrak{L n K}=\left(-\Delta \mathcal{H}^{0} / \mathcal{R}\right)(1 / \mathcal{T})+\Delta \mathcal{S}^{o}
$$

For the vaporization of a liquid:
$\mathcal{A}(\mathcal{l}) \leftrightarrows \mathcal{A}(\mathcal{g}) \quad \mathcal{K}=a_{\mathcal{A}(\mathcal{g})} / a_{\mathcal{A}(l)}=\mathcal{P}_{\mathfrak{A}} / 1=\mathcal{P}_{\mathcal{A}}$
I us substitute and, voila, we fave C-C:

$$
\mathcal{L} \mathcal{P}_{\mathcal{A}}=\left(-\Delta \mathcal{H}^{o}{ }_{v a p} / \mathcal{R}(1 / \mathcal{T})+\Delta \mathcal{S}^{o}\right.
$$

$\mathcal{F u n}$ with Van't $\mathcal{H o f f}$

$>\underline{\text { else to measure } \Delta \mathcal{H}^{o}}$
\checkmark Measure Kat different temperatures \checkmark Plot LnKversus $1 / \mathcal{T}$
\checkmark Straight line plot with slope $=-\Delta \mathcal{H}^{\circ} / \mathcal{R}$
Can calculate ΔG^{o} from K
$>$ Can calculate ΔS° (from $\Delta \mathcal{H}^{\circ}$ \& $\left.\Delta \mathcal{G}^{\circ}\right)$

Big Example Problem

Let's lookat this process to make ammonia:

$$
1 / 2 \mathcal{N}_{2}(g)+3 / 2 \mathcal{H}_{2}(g) \leftrightarrows \mathcal{N} \mathcal{H}_{3}(g)
$$

Some thermodynamic constants:
$\Delta \mathcal{G}^{o}{ }_{f}: \quad 0 \quad 0 \quad-16.48 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathcal{H}^{0}{ }_{f}: \quad 0 \quad 0 \quad-46.11 \mathrm{~kJ} / \mathrm{mol}$

Spontaneous at $25^{\circ} \mathrm{C}$?

- Calculate $\Delta \mathcal{G}^{o}{ }_{r x n}$:
$\Delta \mathcal{G}^{o}=\Sigma \Delta \mathcal{G}^{o}{ }_{f}$ (products) $-\Sigma \Delta \mathcal{G}^{o}{ }_{f}($ reactants $)$
$=\Delta \mathcal{G}^{o}{ }_{f}\left(\mathcal{N H}_{3}\right) \cdot\left[{ }^{3} \Delta \mathcal{G}^{o}{ }_{f}\left(\mathcal{N}_{2}\right)+3 / 2 \Delta \mathcal{G}^{o}{ }_{f}\left(\mathcal{H}_{2}\right)\right]$
$=-16.48 \mathrm{~kJ}-0$
$\Delta \mathcal{G}^{0}=16.48 \mathrm{~kg}$ Yes, reaction is spontaneous

What is the value of K?

prom: $\boldsymbol{\Delta} \mathcal{G}^{o}=-\mathcal{R I L n K}$
$\operatorname{LnK}=\frac{\Delta \mathcal{G}^{o}}{-\mathcal{R I}-(8.3145 \mathrm{~g} / \mathrm{mol}-\mathcal{X})(298.15 \mathrm{X})}=\frac{-16.48 \times 10^{3} \mathrm{~g}}{6479}$
Solving for \mathcal{X} :

$$
\mathcal{K}=e^{6.6479}=7.7118 \times 10^{2}=7.71 \times 10^{2}
$$

What is $\Delta \mathcal{S}^{o}$?

We need $\Delta \mathcal{H}^{o}$ first:

$$
\begin{aligned}
\Delta \mathcal{H}^{o} & =\Sigma \Delta \mathcal{H}^{o}{ }_{f}(\text { products })-\Sigma \Delta \mathcal{H}_{f}^{o}(\text { reactants }) \\
& =\Delta \mathcal{H}^{o}{ }_{f}\left(\mathcal{N H}_{3}\right)-\left[{ }^{1 / 2} \Delta \mathcal{H}^{o}{ }_{f}\left(\mathcal{N}_{2}\right)+3 / 2 \Delta \mathcal{H}_{f}^{o}\left(\mathcal{H}_{2}\right)\right] \\
& =-46.11 \mathrm{~kJ}-0 \\
\Delta \mathcal{H}^{o} & =-46.11 \mathrm{~kJ}
\end{aligned}
$$

\mathcal{N} ow, on to ΔS° !

- Re arranging Gib6s-Helmfoltz:

$$
\Delta \mathcal{S}^{o}=\left(\Delta \mathcal{H}^{o}-\Delta \mathcal{G}^{o}\right) / \mathcal{T}
$$

Substituting:
$\Delta \mathcal{S}^{o}=[(-46,110 \mathrm{~g}-(-16,480 \mathrm{~g}))] / 298.15 \mathcal{K}$
$\Delta S^{o}=-99.37951 \mathrm{~J} / \mathcal{K}$
$\Delta S^{0}=\frac{-99.38 \mathrm{~g} / \mathcal{K}}{\ddots}$

At What Temperature Will $\mathcal{N H}_{3}$ Decompose?

$$
\Delta \mathcal{G}^{o}=\underset{\text { negative }}{\Delta \mathcal{H}^{o}-\mathcal{T} \Delta \mathcal{S}^{o}} \underset{\text { negative }}{o}
$$

$>$ At a high enough temperature, $\Delta \mathcal{G}^{o}$ will be positive and the reverse rxn will be spontaneous:
$\mathcal{T}>\Delta \mathcal{H}^{\circ} / \Delta \mathcal{S}^{0}=-46,110 \mathrm{~g} /-99.38 \mathrm{~g} / \mathrm{K}$

$$
\mathcal{T}>\underline{464.0 \mathcal{K}}
$$

