Fe 6ruary 13, 2002

-Exam \# 1

- TONITE!, 2/13, 7 pm, B104 Angell

On to ΔG !

Next: Find Q

$$
Q=\frac{a_{C \mathcal{H} 3 O \mathcal{H}}}{\left(a_{C O}\right)\left(a_{\mathscr{H} 2}\right)^{2}}=\frac{1}{(5.0)(3.0)^{2}}=2.222 \times 10^{-2}
$$

Finally: Calculate $\Delta \mathcal{G}$
$\Delta \mathcal{G}=\Delta \mathcal{G}^{o}+\mathcal{R} \mathcal{T} \mathcal{L n} Q$
$\Delta G=-2.920 \times 10^{4} \mathrm{~g}+(8.3145 \mathrm{~g} / \mathrm{mol} \mathcal{X})(298.15$ 天 $)\left(\operatorname{Ln}\left(2.222 \times 10^{-2}\right)\right.$
$\Delta \mathcal{G}=-2.920 \times 10^{4} \mathrm{~g}+\left(-9.4366 \times 10^{3} \mathrm{~g}\right)$
$\Delta \mathcal{G}=-3.864 \times 10^{4} \mathrm{~g}=39 . \mathrm{kg}-$ Spontane ous!

How Does $\Delta \mathcal{G}$ Change as the Reaction Proceeds?

Let's make it simple:

$$
\mathcal{A}(\mathcal{g}) \rightarrow \mathcal{B}(\mathcal{g}) \quad \Delta \mathcal{G}<0 \text { (spontaneous) }
$$

So, we can write:

$$
\begin{aligned}
& \mathcal{G}_{\mathfrak{A}}=\mathcal{G}_{\mathcal{A}}^{o}+\operatorname{RI} \mathcal{L N}\left(a_{\mathfrak{A}}\right) \\
& \mathcal{G}_{\mathcal{B}}=\mathcal{G}_{\mathcal{B}}^{o}+\operatorname{RI} \operatorname{Ln}\left(a_{\mathcal{B}}\right)
\end{aligned}
$$

As the reaction proceeds:

$$
\begin{aligned}
& a_{\mathfrak{A}} \text { decreases } \rightarrow \mathcal{G}_{\mathfrak{A}} \text { DECREASES } \\
& a_{\mathcal{B}} \text { increases } \rightarrow \mathcal{G}_{\mathcal{B}} \text { INCREASES } \\
& \Delta \mathcal{G} \rightarrow 0
\end{aligned}
$$

Equilibrium

\rightarrow Reaction will proceed until $\Delta \mathcal{G}=0$
$>$ System is then at Equilibrium:

$$
\mathcal{A}(\mathcal{g}) \leftrightarrows \mathcal{B}(g)
$$

- Equilibrium is dynamic:
- Rate of forward rx = rate of reverserxn
-Re lationship with ΔG :

$\Delta \mathcal{G}=\Delta \mathcal{G}^{o}+\mathbb{R I} \operatorname{Ln} Q=0$

$$
\Delta \mathcal{G}^{o}=-R \mathcal{T L} \mathcal{L n} \mathcal{K}^{2}
$$

$\Delta \mathcal{G}$ and \mathcal{K}

$$
\Delta \mathcal{G}^{o}=-\mathcal{R I L n K}
$$

$\Delta \mathcal{G}^{o}=0$ then $\mathcal{K}=1$ (rxnat equilibrium when all in std states)
$\Delta \mathcal{G}^{o}<0$ then $\mathcal{K}>1$ (fwdrxnspontaneous from std states)
$\Delta \mathcal{G}^{o}>0$ then $\mathcal{K}<1$ (revrxnspontaneous from std states)

Kquantifies the relative balance between products and reactants at equilibrium.

Calculating $\mathcal{K f r o m} \Delta \mathcal{G}^{0}$

Rearrange equation to solve for $\mathcal{K}:$

$$
\mathcal{L n K}=\frac{\Delta G^{o}}{-\mathcal{R} \mathcal{I}}
$$

For our $\mathrm{CH}_{3} \mathrm{OH}$ formation example :

So: at equilibrium, product $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ should predominate:

$$
\mathcal{K}=1 . \chi 10^{5}=1 /\left[\left(a_{C O}\right)\left(a_{\mathscr{H} 2}\right)^{2}\right]
$$

$\mathcal{H o w}$ about an example?

What is the vapor pressure of benzene at $25^{\circ} \mathrm{C}$, if $\boldsymbol{\Delta} \mathcal{G}^{\circ}=$ $5.16 \mathrm{~kJ} / \mathrm{molfor}$:

$$
\mathcal{C}_{6} \mathcal{H}_{6}(l) \leftrightarrows \mathcal{C}_{6} \mathcal{H}_{6}(g)
$$

What is K?

$$
\mathcal{K}=a_{\text {gas }} / a_{\text {liquid }}=\mathcal{P}_{\text {gas }} \quad \text { (vapor pressure of benzene!) }
$$

Knowing that: $\quad \Delta \mathcal{G}^{o}=-\mathcal{R} \mathcal{I} \operatorname{LnK}$

$$
\begin{aligned}
& \operatorname{LnK}=\left(5.16 \times 10^{3} \mathrm{~g} / \mathrm{mol}\right) /[(-8.3145 \mathrm{~g} / \mathrm{mol}-\mathcal{K})(298.15 \mathrm{~K})] \\
& \quad \operatorname{LnK}=-2.08151 \Rightarrow \mathcal{K}=0.12474=\mathcal{P}_{\text {gas }} \\
& \mathcal{P}_{\text {benzene }}=0.12474 \mathrm{~atm}=\underline{95 . \text { torr }}
\end{aligned}
$$

Effect of Temperature on \mathcal{K}

$\square \Delta \mathcal{G}$ is temperature dependent, so:
$\underline{\mathcal{A} t \mathcal{T}_{1}}: \quad \Delta \mathcal{G}^{o}{ }_{1}=\Delta \mathcal{H}^{o}-\mathcal{T}_{1} \Delta S^{o}=-\mathcal{R} \mathcal{I}_{1} \mathcal{L n} \mathcal{K}_{1}$
Solve for $\Delta S^{\circ}: \quad \Delta S^{o}=\mathcal{R} \mathcal{L n} \mathcal{K}_{1}+\Delta \mathcal{H}^{0} / \mathcal{T}_{1}$ $\underline{\mathcal{A t} \mathcal{I}_{2}}: \quad \Delta \mathcal{S}^{0}=\mathcal{R} \mathcal{L n} \mathcal{K}_{2}+\Delta \mathcal{H}^{0} / \mathcal{T}_{2}$
Combine, collect terms, rearrange:

$$
\mathcal{L n}\left(\mathcal{K}_{2} / \mathcal{K}_{1}\right)=-\left(\Delta \mathcal{H}^{0} / \mathcal{R}\right)\left(1 / \mathcal{T}_{2}-1 / \mathcal{T}_{1}\right)
$$

Van't Hoff
Endothermic: Kincreases with increasing temp Exothermic: Kdecreases with increasing temp

