Chemical Kinetics

$$
\begin{gathered}
\text { Chem } 36 \\
\text { Spring } 2002
\end{gathered}
$$

What is it?

\rightarrow Thermo: Could the reaction happen?
$>$ Kinetics: How does the reaction happen?
T wo Goals of Kinetics:

1. Determine the reaction pathway (Mechanism)
\checkmark What steps are involved in the reaction?
2. Control the Rate of the reaction
$>$ Example: $\mathrm{CO}(\mathcal{g})+\mathcal{N O}(\mathcal{g}) \rightarrow \mathrm{CO}_{2}(\mathfrak{g})+1 / 2 \mathcal{N}_{2}(\mathcal{g})$
\checkmark Thermodynamic ally favored, but is slow

Reaction Rates

Let's look at this reaction:

$$
2 \mathfrak{N}_{2} \mathrm{O}_{5}(\mathfrak{g}) \rightarrow 4 \mathfrak{N} \mathrm{O}_{2}(\mathfrak{g})+\mathrm{O}_{2}(\mathfrak{g})
$$

Rate Laws

$>$ Reaction rate varies with $\left[\mathcal{N}_{2} \mathrm{O}_{5}\right]$:

$$
\begin{aligned}
& {\left[\mathcal{N}_{2} \mathrm{O}_{5}\right], \mathrm{mol} / \mathrm{L}} \\
& \text { Line ar relationsfip: } \\
& \text { Rate constant (slope of line) } \\
& \mathcal{K}=\frac{\mathrm{rate}}{\left[\mathcal{N}_{2} \mathrm{O}_{5}\right]}=\frac{0.056 \mathrm{~mol} / \mathrm{L}-\mathrm{min}}{0.160 \mathrm{~mol} / \mathrm{L}} \\
& K=0.35 \mathrm{~min}^{-1}
\end{aligned}
$$

Rate Laws - In General

For any reaction:

$$
a \mathcal{A}+6 \mathcal{B} \rightarrow \text { products }
$$

We can write:

$$
\text { Rate }=k[\mathcal{A}]^{m}[\mathcal{B}]^{n}
$$

$\checkmark m$ and $n \neq a$ and 6

\checkmark Products play no role in
rate of reaction

The Method of Initial Rates

One way to determine values for m and k

- Example: Decomposition of ace aldehyde

$$
\begin{array}{cl}
\mathrm{CH}_{3} \mathrm{CHO} & (\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \\
\text { Rate Law: } & \text { Rate } \left.=\mathrm{K} / \mathrm{CH}_{3} \mathrm{CHO}\right]^{m}
\end{array}
$$

Method:
$>$ Measure initial rate for reactions having different $\left[\mathrm{CH}_{3} \mathrm{CHO}\right.$]

Dat a and Data Crunching

$\left[\mathrm{CH}_{3} \mathrm{CHO}\right]$	0.10	0.20	0.30	0.40	$\mathrm{~mol} / \mathrm{L}$
Initial Rate	0.18	0.72	1.6	2.9	$\mathrm{~mol} / \mathrm{L}-\mathrm{s}$

$\underline{\text { Find } \operatorname{Order}(m)}$

For any two data points:

$$
\begin{aligned}
& \frac{0.18}{0.72}=(0.10 / 0.20)^{m} \quad \Rightarrow 1 / 4=(1 / 2)^{m} m=2 \\
& \text { How does one solve for } m \text { ? }
\end{aligned}
$$

7

What about κ ?

Solve for k :
For any data point:

$$
\begin{aligned}
& \text { Rate } \left.=\kappa / \mathrm{CH}_{3} \mathrm{CHO}\right]^{2} \\
& \kappa=\frac{\text { Rate }}{\left[\mathrm{CH}_{3} \mathrm{CHO}\right]^{2}}=\frac{0.18 \mathrm{~mol} / \mathrm{L}-\mathrm{s}}{(0.10 \mathrm{~mol} / \mathrm{L})^{2}}=18 . \mathrm{L} / \mathrm{mol}-\mathrm{s}
\end{aligned}
$$

\checkmark Knowing m and K Rate at any concentration can be predicted

How does Reactant

Concentration vary with Time?

Depends on the reaction order:
Integrated Rate Laws
$>$ Zeroth Order Reactions

- Rate is independent of concentration:

$$
\text { Rate }=K[\mathcal{A}]^{0}=\mathcal{K}
$$

First-Order Reactions

For the reaction: $\mathcal{A} \rightarrow$ products

$$
\text { Rate }=K[\mathcal{A}]^{1}
$$

Using a bit of calculus:

$$
\log [\mathcal{A}]_{t}=-(\mathbb{K} / 2.303) t+\log [\mathcal{A}]_{0}
$$

1st-Order Reaction Example

Decomposition of hydrogen peroxide:

$$
\begin{gathered}
2 \mathcal{H}_{2} O_{2}(\mathcal{l}) \rightarrow 2 \mathcal{H}_{2} O \quad(\mathcal{O})+O_{2}(g) \\
m=1 \quad k=0.0410 \mathrm{~min}^{-1}
\end{gathered}
$$

If we start with $0.500 \mathrm{~mol} / \mathcal{L} \mathcal{H}_{2} \mathrm{O}_{2}$, what will $\left[\mathcal{H}_{2} \mathrm{O}_{2}\right]$ be after 10.0 min?
$\mathcal{P l u g}$ into $1 s t$-order integrated rate equation:
$\log \left[\mathcal{H}_{2} \mathrm{O}_{2}\right]_{10 \text { min }}=-\left(0.0410 \mathrm{~min}^{-1} / 2.303\right)(10.0 \mathrm{~min})+\log (0.500 \mathcal{M})$
$\log \left[\mathcal{H}_{2} \mathrm{O}_{2}\right]_{10 \text { min }}=-0.479$

$$
\left[\mathcal{H}_{2} \mathrm{O}_{2}\right]_{10 \mathrm{~min}}=0.332 \mathrm{~mol} / \mathrm{L}
$$

More 1st-Order

\mathcal{H} w long will it take for $\left[\mathcal{H}_{2} \mathrm{O}_{2}\right]$ to drop to $0.100 \mathfrak{M}$?
Solve integrated rate law for t :

$$
t=(2.303 / K) \log \left([\mathcal{A}]_{0} /[\mathcal{A}]_{t}\right)
$$

Substituting and solving:
$t=\left(2.303 / 0.0410 \mathrm{~min}^{-1}\right) \log (0.500 / 0.100)$

$$
t=39.3 \text { minutes }
$$

Special Case

$\mathcal{H o w l o n g}$ will it take for half of the $\mathcal{H}_{2} \mathrm{O}_{2}$ to react?

$$
t=(2.303 / k) \log (2.00)=16.9 \mathrm{~min}
$$

For any 1st-order reaction:

$$
t_{1 / 2}=0.693 / \mathrm{K}
$$

2nd-Order Reactions

For the reaction: $\mathcal{A} \rightarrow$ products

$$
\text { Rate }=K[\mathcal{A}]^{2}
$$

Again, with the help of a bit of calculus:

$$
1 /[\mathcal{A}]_{t}=\mathcal{K} t+1 /[\mathcal{A}]_{0}
$$

Determining mind K

$>$ Finding m
Which plot is line ar?

$$
\begin{array}{lll}
{[\mathcal{A}] v s . t ?} & \rightarrow & m=0 \\
\mathcal{L o g}[\mathcal{A}] v s . t ? & \rightarrow & m=1 \\
1 /[\mathcal{A}] \text { vs.t? } & \rightarrow & m=2
\end{array}
$$

Finding K
$m=0 \rightarrow \mathcal{K}=-$ slope $([\mathfrak{A}] v s . t$ plot)
$m=1 \rightarrow K=-2.303 x$ slope $(\log [\mathfrak{A}]$ vs.t plot)
$m=2 \rightarrow K=$ slope $(1 /[\mathcal{A}] v s . t$ plot)

How do reactions happen?

Collision The orly
Reactions take place as a result of collisions between reactants

Example:

$$
\begin{gathered}
\mathrm{CO}(\mathrm{~g})+\mathfrak{N O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathfrak{N O}(\mathrm{g}) \\
\text { Rate }=\mathrm{K} / \mathrm{CO}]\left[\mathfrak{N} \mathrm{NO}_{2}\right]
\end{gathered}
$$

\checkmark Doubling [CO] or [$\mathfrak{N} \mathrm{NO}_{2}$] will double reaction rate \checkmark WHy?

Doubling number of reactant species will double collision frequency

$\mathcal{N o t} \mathcal{A l l}$ Collisions
 Result in a Reaction

$>$ Must $\mathcal{B e}$ Above a Thresfiold Energu \checkmark Kinetic Energy of reactants mustexceed the Activation Energy (\mathcal{E}_{a})

- For our example reaction: $\mathcal{E}_{a}=132 \mathrm{~kg} / \mathrm{mol}$ $\checkmark \underline{\underline{E}}_{a}$ is:
- Independent of temperature
- Independent of concentration
- Always a positive value
\checkmark Fraction of reactants with K.E. $>\mathcal{E}_{a}$ is often small

Suffic ient Energy is

\mathcal{N} ot Enougf
$>$ Colliding reactants must have proper orientation in order to react

Must be oriented so as to form an activated complex that will breakup into products

Reaction Rate depends on:

1. Collision Frequency
2. Fraction of activated species
3. Geometric Probability

Catalysts

Substances which increase reaction rate but are not changed/consumed by the reaction

How? Provide a reaction patfway with a lower \mathcal{E}_{a} :

Reaction pathway
$\mathcal{N o t e}: \Delta \mathcal{E}$ is unaffected by the catalyst

Catalysts: Example

Catalytic Converters

$$
\begin{gathered}
\mathrm{CO}+\text { Kydrocarbons } \rightarrow \mathrm{CO}_{2}+\mathcal{H}_{2} \mathrm{O} \\
\mathfrak{N O}+\mathcal{N O}_{2} \rightarrow \mathcal{N}_{2}+\mathrm{O}_{2}
\end{gathered}
$$

\checkmark Ulse P t and Rf (deposited onto $\mathcal{A l}_{2} \mathrm{O}_{3}$ foneycomb) as catalysts
\checkmark Heterogeneous Catalys is
\checkmark Pb "poisons" catalyst (must use unleaded gasoline)

Catalysts: Anotfer Example

Combustion:

$$
\mathrm{C}_{12} \mathcal{H}_{22} \mathrm{O}_{11}+12 \mathrm{O}_{2} \rightarrow 12 \mathrm{CO}_{2}+11 \mathcal{H}_{2} \mathrm{O}
$$

\checkmark Very slow reaction at Gody temperature $\left(37^{\circ} \mathrm{C}\right)$
\checkmark Enzymes act as catalysts and speed up reaction:

What's This?

$>$ gersey
\rightarrow Guernsey
$>$ Angus
$>$ Brafman
\rightarrow Texas Longforn
$>\mathcal{B r o w n} S$ wiss

$>$ Holste in

Effect of Temperature

Increasing temperature, increases fraction of reactants with $\mathcal{K} \cdot \mathcal{E} .>\mathcal{E}_{a}$

$$
\text { Rule of Thumb: Rxn rate doubles for every } 10^{\circ} \mathrm{C} \text { increase }
$$

The Arrhenius Equation

■ Allows us to quantify the effect of temperature on rate constant:

Rate
constant

Arrhenius Constant (function of collision frequency and steric factors)

Graphical Analysis is

Reaction Mecfunisms

$>$ 3-Step Process

1. Propose a Mechanism
$>$ Sequence of elementary reactions which sum to the totalreaction
2. Determine Rate Law from Mechanism
$>$ Rate Lawfor any elementary reaction:

$$
\text { aA }+\sigma \mathcal{B} \rightarrow \text { products } \quad \text { Rate }=\kappa[\mathcal{A}]^{a}[\mathcal{B}]^{b}
$$

3. Compare Rate Law with Experiment
> Assess plausibility of the mechanism

An Example

$$
\mathcal{H}_{2}(\mathfrak{g})+I_{2}(g) \rightarrow 2 \mathcal{H} I(g)
$$

Proposed Mechanism: Single-Step
\checkmark Reaction proceeds as written: bimolecular

\checkmark Rate $=k\left[\mathcal{H}_{2}\right]\left[I_{2}\right]$
\checkmark Rate Lawagrees with experiment

Another Mechanism

$>\mathcal{A} 2-S$ te Mechanism:

1. Iodine Dissociates (unimolecular process)

2. Iodine atoms combine with \mathcal{H}_{2} (termolecular)

$$
2 I+\mathcal{H}_{2} \xrightarrow{k_{2}} 2 \mathcal{H I} \quad \text { slow }
$$

Rate Law from Mechanism

ΔS lows te determines the rate:

$$
\text { Rate }=\mathcal{K}_{2}\left[\mathcal{H}_{2}\right][I]^{2}
$$

From Step 1: $\quad \mathcal{F w d}$ Rate $=\operatorname{Rev}$ Rate (equilibrium)

$$
\mathcal{K}_{1}\left[I_{2}\right]=\mathcal{K}_{1}[I]^{2}
$$

Solve for $[I]^{2}: \quad[I]^{2}=\left(k_{1} / k_{1}\right)\left[I_{2}\right]$

Substitute: \quad Rate $=\frac{\mathcal{K}_{2} \mathcal{K}_{1}\left[\mathcal{H}_{2}\right]\left[I_{2}\right]}{\mathcal{K}_{1}}$
Finally:

$$
\text { Rate }=k\left[\mathcal{H}_{2}\right]\left[I_{2}\right] \text { agrees with expt. }
$$

$\mathcal{Y A M}$ (yet another mechanism)

- A3-Step Mechanism:

1. Iodine Dissociates (unimolecular process)

$$
I_{2} \underset{k_{1}}{\stackrel{k_{1}}{\leftrightarrows}} 2 I \quad \text { rapid, equilibrium }
$$

2. Displacement

$$
I+\mathcal{H}_{2} \xrightarrow{k_{2}} \mathcal{H I}+\mathcal{H} \quad \text { slow }
$$

3. Combine Remaining Atoms

$$
\mathcal{H}+I \xrightarrow{\kappa_{3}} \mathcal{H I} \quad \text { fast }
$$

Onto the Rate Law

From the slow displacement step:

$$
\text { Rate }=\mathcal{K}_{2}[I]\left[\mathcal{H}_{2}\right]
$$

$\frac{\text { From Step 1: }}{\text { (equilibrium) }} \quad \mathcal{F} w d$ Rate $=\operatorname{Rev}$ Rate

$$
k_{1}\left[I_{2}\right]=\kappa_{1}[I]^{2}
$$

Does $\mathcal{N O T}$ agree with experiment!
$\mathfrak{M E} C \mathcal{H} \mathcal{A N}$ IS $\mathfrak{M} 3$ is not
Solve for [I]: $[I]=\left\{\left(\kappa_{1} / \kappa_{1}\right)\left[I_{2}\right]\right\}^{1 / 2}$

Substitute:
Finally:

$$
\text { Rate }=K\left[\mathcal{H}_{2}\right]\left[I_{2}\right]^{1 / 2}
$$

Which Mechanism is Correct?

$>\frac{\text { Mecfranisms I and I I are } 6 \text { oth plausible }}{\text { (rate laws are consistent with experiment) }}$
\checkmark Do additional experiments: lookfor the reactive intermediate (evidence for the existence of I ?)
\checkmark Results?
\Rightarrow Evidence favors Mechanism II

