Equilibrium

> Chem 36
> Spring 2002

The Equilibrium Condition

$>$ Recall: a system is at equilibrium when $\Delta \mathcal{G}=0$

- No net driving force for process in either direction
$>$ Equilibrium is a dynamic condition
- Reaction fils not stopped
- No net change in the amounts of products or reactants

Rand Equilibrium Position

Case 1: Kvery small $(\mathbb{K} \ll 1)$

$$
\mathcal{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathcal{N} O(\mathrm{~g})
$$

$$
\mathcal{K}=\frac{\left(\mathcal{P}_{\mathfrak{X O}}\right)^{2}}{\left(P_{\mathcal{V}_{2} 2}\right)\left(\mathcal{P}_{\mathrm{O} 2}\right)}=1 . \times 10^{.30} \text { at } 25^{\circ} \mathrm{C}
$$

\mathcal{A} equilibrium, do reactants or products predominate?

Calculate it!

Suppose we know that:

$$
\begin{gathered}
\mathcal{P}_{\mathcal{N} 2}=\mathcal{P}_{\mathrm{O} 2}=1.0 \text { atm (at equilibrium) } \\
\text { Calculate } \mathcal{P}_{\mathcal{N} O}
\end{gathered}
$$

Solve equilibrium constant expression for $P_{P_{N O}}$:

$$
\left(\mathcal{P}_{\mathfrak{N O}}\right)^{2}=\mathcal{K} \mathcal{P}_{\mathfrak{N} 2} \mathcal{P}_{\mathrm{O} 2}=\left(1 . \chi 10^{-30}\right)(1.0)(1.0)
$$

$$
\left(\mathcal{P}_{\mathcal{N} O}\right)^{2}=1 \cdot \chi 10^{-30}
$$

$$
\mathcal{P}_{\mathfrak{N O}}=\left(1 . X 10^{.30}\right)^{1 / 2}=\underline{1 . x 10^{-15} \mathrm{~atm}}
$$

Reverse it!

Case 2: Kverylarge (K>> 1)

$$
2 \mathcal{N O}(g) \leftrightarrows \mathcal{N}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g})
$$

$$
\mathcal{K}=\underline{\left(\mathcal{P}_{\mathfrak{N} 2}\right)\left(\mathcal{P}_{O 2}\right)}=1 . X 10^{30} \text { at } 25^{\circ} \mathrm{C}
$$

$$
\left(\mathcal{P}_{\mathfrak{N O}}\right)^{2}
$$

\mathcal{A} t equilibrium, products predominate

\mathcal{A} Third Case

$$
\begin{array}{ll}
\text { Case 3: } & \mathcal{K} \approx 1 \\
& \mathcal{N}_{2} O_{4}(g) \leftrightarrows 2 \mathfrak{N} O_{2}(g)
\end{array}
$$

$$
\mathcal{K}=\underline{\left(\mathcal{P}_{\mathcal{N O} 2}\right)^{2}}=11 . \text { At } 100^{\circ} \mathrm{C}
$$

$$
\mathcal{P}_{\mathfrak{N N O}_{2}}
$$

$\mathcal{H e r e}$, we expect to have similar amounts of products and reactants

Calculate!

Suppose we know that:

$$
\begin{gathered}
\mathcal{P}_{\mathfrak{N} 2 \mathrm{O} 4}=1.0 \text { atm (at equilibrium) } \\
\text { Calculate } \mathcal{P}_{\mathfrak{N O 2}}
\end{gathered}
$$

Solve equilibrium constant expression for $P_{2(02}$:
$\left(P_{\mathcal{X O} 2}\right)^{2}=\mathcal{K} P_{\mathcal{P}_{(2 \mathrm{O} 4}}=(11).(1.0)$
$\left(P_{\mathrm{NO}_{2}}\right)^{2}=11$.
$P_{\mathrm{NO}_{2}}=(11 .)^{1 / 2}=3.3 \mathrm{~atm}$

Are we there yet?

$>\mathcal{H o w}$ do we know whether a system is at equilibrium?
$>$ Evaluate $\Delta \mathcal{G}($ lots work! $): \Delta \mathcal{G}=\Delta \mathcal{G}^{o}+\mathcal{R T} \mathcal{L n} Q$
$>$ Calculate Q and compare with \mathcal{K}

1. If $\underline{Q}<\mathcal{X}: ~ \Delta \mathcal{G}$ is negative ($r \chi n$ proceeds forward)
2. If $\underline{Q}>\mathcal{K} ; \Delta \mathcal{G}$ is positive (rn proceeds in reverse)
3. If $\underline{Q}=\mathcal{K}: \Delta \mathcal{G}=0$ (system is $\mathcal{A T}$ equilibrium)

Example

$$
\begin{gathered}
\mathrm{CO}_{2}(g)+\mathcal{H}_{2}(g) \leftrightarrows \mathcal{C O}(g)+\mathcal{H}_{2} O(g) \\
\mathcal{K}=0.64 \text { at } 900 . \mathcal{K}
\end{gathered}
$$

- If we have 1 atm of each gas, in which direction will reaction proceed spontaneously?
$Q=\frac{\mathcal{P}_{\mathrm{CO}} \mathcal{P}_{\mathcal{H} 2 \mathrm{O}}}{\mathcal{P}_{\mathrm{CO} 2} \mathcal{P}_{\mathcal{H} 2}}=\frac{(1)(1)}{(1)(1)}=1>0.64=\mathcal{K}$
$Q>\mathcal{K}:$ Reverse Run is Spontaneous

Example: Calculating K

$$
\mathrm{CH}_{4}(\mathfrak{g})+\mathcal{H}_{2} \mathrm{O}(\mathrm{~g}) \leftrightarrows \mathrm{CO}(\mathrm{~g})+3 \mathcal{H}_{2}(\mathrm{~g})
$$

At equilibrium (at 600 K):
$\begin{array}{lllll}\text { P, atm: } & 1.40 \quad 2.30 & 1.60 & 7.1 \text { 犭 } 10^{-3}\end{array}$
Into the equilibrium constant expression:

$$
\begin{gathered}
\mathcal{K}=\frac{\left(P_{\mathcal{C O}}\right)\left(P_{\mathcal{H} 2}\right)^{3}}{\left(P_{\mathcal{H} 4}\right)\left(\mathcal{P}_{\mathcal{H} 2 O}\right)}=\frac{(1.60)\left(7.1 \times 10^{-3}\right)^{3}}{(1.40)(2.30)} \\
\mathcal{K}=1.8 \times 10^{-7}
\end{gathered}
$$

Calculating Equilibrium Activities

Example:

$$
\begin{gathered}
\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}(g) \leftrightarrows\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}(g)+\mathcal{H}_{2}(g) \\
\mathcal{K}=0.444 \text { (at } 452 \mathcal{X})
\end{gathered}
$$

Calculate: equilibrium pressures if we start out with $1.000-\mathrm{g}$ is opropanol in a 2.00- vessel, at 452 K

Convert to pressure:

$$
\mathcal{P}_{i s o}=n \mathcal{R T} / \mathcal{V}=0.3086 \mathrm{~atm}
$$

The ICE Method

$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}(\mathrm{g}) \leftrightarrows\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}(\mathrm{g})+\mathcal{H}_{2}(\mathrm{~g})$

Initial: 0.3086 atm

Change: \qquad

χ

χ

Plug values into equilibrium constant expression:

$$
\mathcal{K}=\left(\mathcal{P}_{\text {acct }}\right)\left(\mathcal{P}_{\mathcal{H} 2}\right) /\left(\mathcal{P}_{\text {isopro }}\right)
$$

Solving for x

Solving for χ (continued)

Substituting into the quadratic equation:
$x=\frac{-0.444 \pm\left[(0.444)^{2}-4(1)(-0.13702)\right]^{1 / 2}}{2(1)}$
$>$ Rearranging and solving:

$$
x=-0.444 \pm 0.863259=0.20963
$$

Relating x to pressures

- Substitute x back into equilibrium pressure expressions:

$$
\begin{aligned}
& \mathcal{P}_{\text {acetone }}=\mathcal{P}_{\mathcal{H} 2}=\chi=0.210 \text { atm } \\
& \mathcal{P}_{\text {isopropanol }}=0.3086-\chi=0.099 \mathrm{~atm}
\end{aligned}
$$

$>$ What is the \%-dissociation of isopropanol?

$$
\begin{aligned}
\%-\text { dis soc } & =\left(\mathcal{P}_{\text {reacted }} / \mathcal{P}_{\text {initial }}\right) \times 100 \\
& =(x / 0.3086) \times 100 \\
& =(0.20963 / 0.3086) \times 100=67.9 \%
\end{aligned}
$$

Disturbing Equilibrium

What happens when we disturb a system at equilibrium?

Le Cflatelier's Principle:

Reaction will proceed so as to counteract the effects of the disturbance

Let's look at the effects of changing:

- Amount of a product or reactant
- Volume

Changing \mathcal{A} mounts of Reactant or Product

Back to our example reaction:
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}(g) \leftrightarrows\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}(g)+\mathcal{H}_{2}(g)$
$>$ Remove a product: rn shifts to the right
$>$ Add a reactant: rxnshifts to the right
\rightarrow Remove a reactant: rxnshifts to the left
$>$ Add a product: rxnshifts to the left

\mathcal{N} ow, Quantitatively

\square We start at our established point of equilibrium:
$\mathcal{P}_{\text {acetone }}=\mathcal{P}_{\mathcal{H} 2}=\underline{0.210 \mathrm{~atm}}$
$\mathscr{P}_{\text {isopropanol }}=\underline{0.099 \mathrm{~atm}}$
$>$ What will the equilibrium pressures become IF we add \mathcal{H}_{2} so that:

$$
\mathcal{P}_{\mathscr{H} 2}=0.300 \mathrm{~atm} ?
$$

I CE Again

Solve for x

$$
\mathcal{K}=\frac{(0.210-x)(0.300-x)}{0.0990+x}=0.444
$$

From the quadratic formula, we get:

$$
x=0.0204
$$

Substituting into ICE equilibrium expressions, gives:

$\mathcal{P}_{\text {isopropanol }}=0.0990+\chi$	$=0.119$ atm $=\mathcal{P}_{\text {isopropanol }}$
$\mathcal{P}_{\text {acetone }}=0.210-\chi$	
$\mathcal{P}_{\mathcal{H} 2}=0.300-\chi$	$=0.190$ atm $=\mathcal{P}_{\text {acetone }}$
$0.280 \mathrm{~atm}=\mathcal{P}_{\mathcal{H} 220}$	

Changing Volume

\rightarrow Let's see what happens if we fratve the volume of our reaction vessel:
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}(g) \leftrightarrows\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO} \quad(\mathrm{g})+\mathcal{H}_{2}(\boldsymbol{g})$
At equilibrium:

$$
0.119 \text { atm } \quad 0.210 \mathrm{~atm} \quad 0.280 \mathrm{~atm}
$$

Halving the volume will double the pressures:
$0.238 \mathrm{~atm} \quad 0.420 \mathrm{~atm} \quad 0.560 \mathrm{~atm}$
What happened to Q ?

Equilibrium Check!

$$
\begin{gathered}
Q=\frac{(0.420)(0.560)}{0.238}=0.988 \\
Q=0.988>0.444=\mathcal{K}
\end{gathered}
$$

Too much product, so reaction shifts:
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}(g) \leftrightarrows\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}(g)+\mathcal{H}_{2}(\mathcal{g})$
Shift

Volume Change: In General

Changing the volume will change the partial pressures of all gases
\checkmark If the number of moles of gas products or reactants is not the same, then the change in pressure will be different for the products and reactants (and $Q \neq \mathcal{X}$)
\checkmark Equilibrium shifts to decrease the overall pressure and the reaction shifts to the side with the fewest number of moles of gas (until $Q=\mathcal{K}$).
\checkmark What if $\boldsymbol{\Delta} n_{\text {gas }}=0$? No Shift! $(Q=\mathcal{K})$.

Effect of $\mathcal{A d d i n g}$ an Inert Gas

$>$ Suppose we add some Argon to a
system at equilibrium . . Will that
change the position of equilibrium?
The Simple Answer: \mathcal{N} o!
\checkmark The partial pressures of the reactants and products are not affected $(Q=\mathcal{K})$
$>$ The Real Answer: It De pends!
\checkmark Constant Volume or Constant Pressure?

Added Inert Gas: Constant Volume

\rightarrow If volume is unchanged upon addition of gas, then $\mathcal{P}_{\text {total }}$ must increase:

Before: $\quad P_{\text {total }}=P_{\text {reactants }}+P_{\text {products }}$
After: $\quad \mathcal{P}_{\text {total }}=\mathcal{P}_{\text {reactants }}+\mathcal{P}_{\text {products }}+\mathcal{P}_{\text {gas }}$
$>$ Partial Pressures of reactants and products are unchanged:
No Shift

Added Inert Gas:
 Constant Pressure

$>$ If pressure is unchanged upon addition of gas, then volume must increase.

Before: $\quad \mathcal{P}_{\text {total }}=\mathcal{P}_{\text {reactants }}+\mathcal{P}_{\text {products }}$
After: $\quad \mathcal{P}_{\text {total }}=\mathcal{P}_{\text {reactants }}+\mathcal{P}_{\text {products }}+\mathcal{P}_{\text {gas }}$
$\mathcal{B U I}: \mathcal{P}_{\text {total }}($ before $)=\mathcal{P}_{\text {total }}($ after $)$
Partial pressures of reactants and products must decrease in order to keep total pressure constant

Reaction Can Shift

Effect of Temperature

Treat feat as a:
Product (for exothermic process)
Reactant (for endothermic process)
Example:

Manipulating K's and Equilibrial

What happens to Kwhen we add/subtract/reverse equilibria?

Reverse Reaction:

1) $\mathcal{A} \leftrightarrows \mathcal{B} \quad \mathcal{K}_{1}=\mathcal{P}_{\mathcal{B}} / \mathcal{P}_{\mathcal{A}}$
2) $\mathcal{B} \leftrightarrows \mathcal{A} \quad \mathcal{K}_{2}=\mathscr{P}_{\mathfrak{A}} / \mathcal{P}_{\mathcal{B}}=1 / \mathcal{K}_{1}$

$\mathfrak{A d d i n g}$ Equilibria

Let's add these two reactions:

1) $\mathcal{A}+\mathcal{B} \leftrightarrows \mathcal{C}$
$\mathcal{K}_{1}=\frac{\mathcal{P}_{C}}{\mathcal{P}_{\mathcal{A}} \mathcal{P}_{\mathcal{B}}}$
$\mathcal{K}_{2}=\underline{\underline{P}}_{\mathcal{E}} \underline{\mathcal{P}}_{\mathcal{B}}$
Add Rxns = Multiply K's $\mathcal{P}_{\mathcal{C}} \mathcal{P}_{\mathcal{D}}$
2) $\mathcal{A}+\mathscr{B}+\varnothing(\mathcal{D} \leftrightarrows \not \subset+\mathcal{E}+\not B$

$$
\mathcal{A}+\mathcal{D} \leftrightarrows \mathcal{E}
$$

$$
\begin{array}{|l|}
\mathcal{K}_{3}=\mathcal{K}_{1} \mathcal{K}_{2} \\
=\frac{\mathcal{P}_{\mathcal{E}} \mathcal{P}_{\mathcal{E}} \mathcal{R}_{\mathcal{R}}}{\mathcal{P}_{\mathfrak{A}} \mathcal{P}_{\mathcal{R}} \mathcal{P}_{\mathcal{C}} \mathcal{P}_{\mathcal{D}}}=\frac{\mathcal{P}_{\mathcal{E}}}{\mathcal{P}_{\mathcal{A}} \mathcal{P}_{\mathcal{D}}}
\end{array}
$$

K_{\neq}versus $\mathcal{K}_{\varepsilon}$

What if gas amounts are expressed as concentrations (mo ls)?

- $\mathcal{K}_{p}=$ thermodynamic K(atm)
- $K_{\varepsilon}=$ concentration - based equilib constant

Ideal Gas Law: $\quad \mathcal{P}=(n / \mathcal{V}) R \mathcal{T}$
It can be shown that:

Example using $\mathcal{K}_{\varepsilon}$

$\mathcal{N}_{2}(g)+3 \mathcal{H}_{2}(g) \leftrightarrows 2 \mathcal{N H}_{3}(g) \quad \mathcal{K}=1.65 \times 10^{-2}($ at $300 \mathcal{X})$
Calculate the equilibrium concentrations of the gases if we start with:

$$
\begin{aligned}
& {\left[\mathcal{N}_{2}\right]=0.500 \mathrm{~mol} / \mathrm{L} \quad n_{\mathcal{V} 2}=2.0 \mathrm{~L}(0.500 \mathrm{~mol} / \mathrm{L})=1.00 \mathrm{~mol}} \\
& {\left[\mathcal{H}_{2}\right]=1.500 \mathrm{~mol} / \mathrm{L} \quad n_{\mathcal{H} 2}=2.0 \mathrm{~L}(1.500 \mathrm{~mol} / \mathrm{L})=3.00 \mathrm{~mol}}
\end{aligned}
$$

Total Volume $=2.0 \mathrm{~L}$
Converting \mathcal{K} to \mathcal{K}_{e} :

$$
\mathcal{K}_{e}=\mathcal{K}_{\varphi} /(\mathcal{R T})^{\Delta n}=\frac{1.65 \times 10^{-2}}{[(0.08206)(300)]^{-2}}=10.0=\mathcal{K}_{\varepsilon}
$$

ICE Time!

$$
\mathcal{N}_{2}(g)+3 \mathcal{H}_{2}(g) \leftrightarrows 2 \mathcal{N H}_{3}(g)
$$

Initial mol $1.00 \mathrm{~mol} 3.00 \mathrm{~mol} \quad 0 \mathrm{~mol}$

Change	$-x$	$-3 x$	$+2 x$
Equilib mol	$1.00 \cdot x$	$3.00-3 x$	$2 x$
Equilib conc. $\frac{1.00-x}{2.0}$	$\frac{3.00-3 x}{2.0}$	$\frac{2 x}{2.0}$	

Solving for x

$$
\mathcal{K}_{e}=\frac{\left[\mathcal{N H}_{3}\right]^{2}}{\left[\mathcal{N}_{2}\right]\left[\mathcal{H}_{2}\right]^{3}}=10.0
$$

Substituting and collecting terms:

$$
\frac{x^{2}}{(1.00-x)^{4}}=16.875
$$

Reduces to the following quadratic:

$$
4.108 x^{2}-9.216 x+4.108=0
$$

Finally, the Answers

$\left[\mathcal{N} \mathcal{H}_{3}\right]=2 \chi / 2.0=2(0.6143) / 2.0=0.61 \mathrm{~mol} / \mathcal{L}$

$$
\begin{aligned}
& {\left[\mathcal{H}_{2}\right]=\frac{3.00-3(0.6143)}{2.0}=0.58 \mathrm{~mol} / \mathrm{L}} \\
& {\left[\mathcal{N}_{2}\right]=\frac{1.00-0.6143}{2.0}=0.19 \mathrm{~mol} / \mathrm{L}}
\end{aligned}
$$

