## April 8, 2002

**≻**This Week: Demo a day!

**▶ Redox:** Readings and Assigned Problems

(with solutions) are now online!

1

# Oxidation-Reduction Chemistry

Chem 36 Spring 2002

#### **Definitions**

■ Redox reactions involve *electron transfer*:



#### Half-Reactions

> Consider each process indivually:

**Oxidation** Cu (s) 
$$\rightarrow$$
 Cu<sup>2+</sup> (aq) + 2 e<sup>-</sup>

**Reduction** [Ag<sup>+</sup> + e<sup>-</sup> 
$$\rightarrow$$
 Ag (s) ] x 2

**Overall:** 
$$Cu$$
 (s) +  $2Ag^+$  (aq)  $\rightarrow Cu^{2+}$  (aq) +  $2Ag$  (s)

Oxidized (reducing agent)

Reduced (oxidizing agent)

4

#### **Balancing Redox Reactions**

#### The Half-Reaction Method

Three Steps:

- 1. Determine *net ionic equations* for both half-reactions
- 2. Balance half-reactions with respect to mass and charge
- 3. Combine so as that electrons cancel

5

#### Example

$$SO_3^{2-} + H^+ + MnO_4^- \rightarrow SO_4^{2-} + Mn^{2+} + H_2O$$

1. Write Skeleton Half-Reactions

**Oxidation** 
$$SO_3^{2-} \rightarrow SO_4^{2-}$$

**Reduction** 
$$MnO_4^- \rightarrow Mn^{2+}$$

2. Mass Balance

$$SO_3^{2-} + H_2O \rightarrow SO_4^{2-} + 2H^+$$

$$MnO_4^- + 8H^+ \rightarrow Mn^{2+} + 4H_2O$$

- •Add H<sub>2</sub>O to side needing oxygen
- •Add H<sup>+</sup> to balance hydrogen

### **Example: Continued**

3. Charge Balance (use electrons)

$$SO_3^{2-} + H_2O \rightarrow SO_4^{2-} + 2H^+ + 2e^-$$
  
 $MnO_4^{-} + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$ 

4. Combine!

$$[SO_3^{2-} + H_2O \rightarrow SO_4^{2-} + 2H^+ + 2e^-] \times 5$$
  
 $[MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O] \times 2$ 

$$5SO_3^{2^-} + 5H_2O + 2MnO_4^- + 16H^+ + 10e^- \rightarrow$$
  
 $5SO_4^{2^-} + 10H^+ + 10e^- + 2Mn^{2^+} + 8H_2O$