April 5, 2002

➢Quiz and Demo (sorta) today!

When Precipitation Happens

> Will a precipitate form when we mix two solutions?

Example:

If we mix 50.0 mL 0.010 $M \text{ Pb}(\text{NO}_3)_2$ and 50.0 mL 0.010 M KI, will PbI_2 ($K_{sp} = 1.4 \times 10^{-8}$) precipitate?

 $PbI_{2}(s) \Leftrightarrow Pb^{2+}(aq) + 2I^{-}(aq)$

50.0 mL 0.010 $M = 0.50 \text{ mmol Pb}^{2+}$ and I -

 $C_{Pb2+} = C_{1-} = 0.50 \text{ mmol/100.0 mL} = 5.0 \times 10^{-3} M$

Q = $(C_{Pb2+})(C_{1-})^2$ = (5.0 x 10⁻³)(5.0 x 10⁻³)² = **1.25 x 10⁻⁷**

Q > K_{sp} so <u>Pb1, will precipitate</u>

2

1

How much Ba²⁺ remains when SrCrO₄ begins to precipitate?

When $SrCrO_4$ begins to precipitate:

$$[CrO_4^{2-}] = 3.6 \times 10^{-2} M$$

5

So:
$$[Ba^{2+}] = \frac{K_{sp}}{[CrO_4^{2-}]} = \frac{2.4 \times 10^{-10}}{3.6 \times 10^{-2}} = 6.7 \times 10^{-9} M$$

% Ba^{2+} remaining: Ba^{2+} remaining

$$\frac{[Ba^{2+}]}{C_{Ba^{2+}}} = \frac{6.7 \times 10^{-9}}{1.0 \times 10^{-3}} \times 100 = \frac{6.7 \times 10^{-4} \%}{1.0 \times 10^{-3}}$$