## April 1, 2002

Quiz Revie w
■roblem Session Today (A531 Cook; 3-4 pm)
>It's "Double Quiz" We ek!
-()Comprefiensive
() Counts TRIPLE
©Replaces the Final Exam
© $\mathcal{N}$ o Partialcredit!
$\bigcirc \mathfrak{N}$ O Periodic Table
() Can't use a writing implement!
())Must communicate your answers telepathically
(-)Must use onty S anskrit or another dead language
©if you can read this, you don't need glasses!

## Polyprotic Acids

What if an acid has more than one acidic proton?

Example: $\mathcal{H}_{2} \mathrm{CO}_{3}$

$$
\begin{array}{lll}
\mathcal{H}_{2} \mathrm{CO}_{3} \leftrightarrows \mathcal{H}^{+}+\mathcal{H C O}_{3} & \mathcal{K}_{1}=4.3 \times 10^{-7} \\
\mathcal{H C O}_{3} \leftrightarrows \mathcal{H}^{+}+\mathrm{CO}_{3}^{2 \cdot} & \mathcal{K}_{2}=4.8 \times 10^{-11} \\
\text { If } \mathcal{K}_{1} \gg \mathcal{K}_{2}: \text { Treat as separate acids }
\end{array}
$$

## Titration of $\mathcal{H}_{2} \mathrm{CO}_{3}$

Reaction with $O \mathcal{H}$ occurs stepwise:
$\mathcal{H}_{2} \mathrm{CO}_{3}$ reacts first:

$$
\mathcal{H}_{2} \mathrm{CO}_{3}+\mathrm{OH}^{-} \rightarrow \mathcal{H C O}_{3}^{-}+\mathcal{H}_{2} \mathrm{O}
$$

$\mathcal{H C O}_{3}$ reacts only once all $\mathcal{H}_{2} \mathrm{CO}_{3}$ is gone:

$$
\mathcal{H C O}_{3}^{-}+\mathrm{OH}^{-} \rightarrow \mathrm{CO}_{3}{ }^{2 \cdot}+\mathcal{H}_{2} \mathrm{O}
$$

$\mathcal{H}_{2} \mathrm{CO}_{3}:$ Weak Acid $\quad \mathcal{H}_{2} \mathrm{CO}_{3} / \mathcal{H C O}_{3}:$ Buffer $\mathrm{CO}_{3}{ }^{2 \cdot}$ : Weak Base $\mathcal{H C O}_{3} \cdot / \mathrm{CO}_{3}{ }^{2 \cdot}$ : Buffer
$\mathcal{H C O}_{3}: \mathcal{A m p f o t e r i c ~ ( a c t s ~ a s ~ b o t h ~ a c i d ~ a n d ~ a ~ b a s e ) ~}$

## Dealing with $\mathcal{H C O}_{3}$.

Will a solution of $\mathcal{H C O}_{3}$ be acidic or basic? Two equilibria:
$\mathcal{H C O}_{3}{ }^{-} \leftrightarrows \mathcal{H}^{+}+\mathrm{CO}_{3}{ }^{2 .} \quad \mathcal{K}_{2}=4.8 \times 10^{-11}$
$\mathcal{H C O}_{3}{ }^{-}+\mathcal{H}_{2} \mathrm{O} \leftrightarrows \mathcal{H}_{2} \mathrm{CO}_{3}+O \mathcal{H}^{-} \quad \mathcal{K}_{6}=\mathcal{K}_{w} / \mathcal{K}_{1}=2.3 \times 10^{-8}$
$\mathcal{K}_{6}>\mathcal{K}_{2}$, so $\mathcal{H C O}_{3}$ is a stronger base than acid (solution will be basic)

Quantitatively?
$>$ It can be shown that:

$$
\left.\left[\mathcal{H}^{+}\right]=\left[\underline{K}_{1} \underline{K}_{2}\left[\mathcal{H A}^{-}\right]+\mathcal{K}_{1} \mathcal{K}_{v}\right]^{\mathcal{K}_{1}+\left[\mathcal{H} \mathcal{A}^{-}\right]}\right]^{1 / 2}
$$

$\checkmark$ But $\mathcal{H C O}_{3} \cdot$ is such a weakacid/6ase that it dissociates very little: $\left[\mathcal{H C O}_{3}^{-}\right] \approx \mathcal{C H C O}_{3}$.
$\checkmark \mathfrak{A l s o}$, if: $\mathcal{C}_{\mathcal{H C O}_{3}} \gg \mathcal{K}_{1}$ and $\mathcal{K}_{2} \gg \mathcal{K}_{v}$
$\underline{\mathcal{T H E N}}: \quad\left[\mathcal{H}^{+}\right]=\left(\mathcal{K}_{1} \mathcal{K}_{2}\right)^{1 / 2} \quad\left(p \mathcal{H}=1 / 2\left[p \mathcal{K}_{I}+p \mathcal{K}_{2}\right]\right)$

