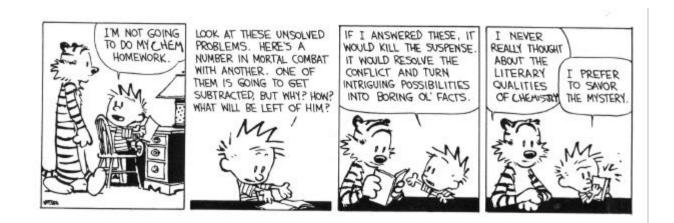
## CHEM 36 General Chemistry EXAM #3


April 17, 2002

Name: Anne Sir Kei

**INSTRUCTIONS:** Read through the entire exam before you begin. Answer all of the questions. For questions involving calculations, show **all** of your work -- **HOW** you arrived at a particular answer is **MORE** important than the answer itself! Circle your final answer to numerical questions.

The entire exam is worth a total of 150 points. Attached are a periodic table and a formula sheet jam-packed with useful stuff. Good Luck!

| Page   | Possible<br>Points | Points<br>Earned |
|--------|--------------------|------------------|
| 2      | 25                 | 25               |
| 3      | 25                 | 25               |
| 4      | 25                 | 25               |
| 5      | 25                 | 25               |
| 6      | 20                 | 20               |
| 7      | 30                 | 30               |
| TOTAL: | 150                | 150              |



1. a. **[15 pts]** How many grams of aluminum hydroxide will saturate 50.0 mL of water at 25 °C? The solubility-product constant for the dissolution

$$AI(OH)_3$$
 (s)  $\Rightarrow$   $AI^{3+}$  (aq) +  $3OH^{-}$  (aq)

is  $K_{sp} = 1.9 \times 10^{-33}$ .

From the reaction stoichiometry, we find:  $[AI^{3+}] = S$  and  $[OH^{-}] = 3S$ Plugging into the K<sub>sp</sub> expression: K<sub>sp</sub> =  $[AI^{3+}][OH^{-}]^3 = 1.9 \times 10^{-33}$  $S(3S)^3 = 1.9 \times 10^{-33}$  $27S^4 = 1.9 \times 10^{-33}$  $S = 2.89633 \times 10^{-9} mol/L$ 

Since S=# mol AI(OH)<sub>3</sub> soluble in 1.00 L water, in 50.0 mL:

0.0500 L x 2.89633 x 10<sup>-9</sup> mol Al(OH)<sub>3</sub> x 78.22 g Al(OH)<sub>3</sub> = 1.1327 x 10<sup>-8</sup> g  
L mol Al(OH)<sub>3</sub> Al(OH)<sub>3</sub>  
$$1.1 x 10-8 g Al(OH)3$$

b. **[10 pts]** Would  $AI(OH)_3$  be **more soluble** or **less soluble** in an *acidic* solution than in pure water? Explain.

 $AI(OH)_3$  is a *base* and so will dissolve in acid:

$$AI(OH)_3$$
 (s) +  $3H^+$  (aq) **(a)**  $AI^{3+}$  (aq) +  $3H_2O$  (l)

So,  $AI(OH)_3$  is more soluble in acidic solution.

- 2. The Mohr method is a technique for determining the amount of chloride ion in an unknown sample. It is based on the difference in solubility between silver chloride (AgCl;  $K_{sp} = 1.6 \times 10^{-10}$ ) and silver chromate (Ag<sub>2</sub>CrO<sub>4</sub>;  $K_{sp} = 1.9 \times 10^{-12}$ ). In this method, one adds a small amount of chromate ion to a solution with unknown chloride concentration. By measuring the volume of AgNO<sub>3</sub> added before the appearance of the red silver chromate, one can determine the amount of Cl<sup>-</sup> originally present.
  - a. **[10 pts]** Suppose we have a solution that is 0.100 *M* in Cl<sup>-</sup> and 0.00250 *M* in  $CrO_4^{2^-}$ . If we add 0.100 *M* AgNO<sub>3</sub> solution drop by drop, will AgCl or Ag<sub>2</sub>CrO<sub>4</sub> precipitate first? Justify your answer with a calculation.

We need to calculate [Ag<sup>+</sup>] at which each compound will precipitate:

For <u>AgCI</u>:  $[Ag^+] = K_{sp}/[CI^-] = \frac{1.6 \times 10^{-10}}{0.100 M} = 1.6 \times 10^{-9} M$ 

For <u>Ag<sub>2</sub>CrO<sub>4</sub></u>:  $[Ag^+]^2 = K_{sp}/[CrO_4^{2-}] = \frac{1.9 \times 10^{-12}}{2.50 \times 10^{-3}} M$ [Ag<sup>+</sup>] = 2.76 × 10<sup>-5</sup> M

Since  $[Ag^+]_{AqCI} < [Ag^+]_{Aq2CrO4}$ , <u>AgCI will precipitate first</u>

b. **[15 pts]** When Ag<sub>2</sub>CrO<sub>4</sub> first appears, what fraction of the Cl<sup>-</sup> that was originally present remains?

From part a, Ag<sub>2</sub>CrO<sub>4</sub> begins to precipitate when  $[Ag^+] = 2.76 \times 10^{-5} M$ 

So,  $[CI^{-}]$  when  $[Ag^{+}] = 2.76 \times 10^{-5} M$ :

$$[CI^{-}] = K_{sp}/[Ag^{+}] = \frac{1.6 \times 10^{-10}}{2.76 \times 10^{-5}} = 5.80 \times 10^{-6} M$$

Fraction Remaining = 
$$\underline{[CI^-]_{\text{remaining}}} = \frac{5.80 \times 10^{-6} M}{0.100 M} = \underline{5.8 \times 10^{-5}}$$

- 3. Vitamin C is ascorbic acid (HC<sub>6</sub>H<sub>7</sub>O<sub>6</sub>) which has a  $K_a = 8.0 \times 10^{-5}$ .
  - a. **[10 pts]** Calculate the pH of a  $8.0 \times 10^{-1}$  M solution of ascorbic acid.

 $K_a = [H^+][Asc^-] = 8.0 \times 10^{-5}$ HAsc Asc<sup>-</sup> 左 H⁺ [HAsc] I 0.80 \_ \_ С -х **+X** +X  $x^{2}/(0.80-x) = 8.0 \times 10^{-5}$ E 0.80 -x Х Х Assume: x << 0.80  $x = [H^+] = 8.0 \times 10^{-3} M_{-1}$  $x^2 = 6.4 \times 10^{-5}$  $x = 8.0 \times 10^{-3} M$  $pH = -Log(8.0 \times 10^{-3})$ pH = 2.10 Assumption checks

**b. [15 pts]** 40.0 mL of a 0.500 M NaOH solution is added to 25.00 mL of the ascorbic acid solution described above. Calculate the pH of the resultant solution.

25.00 mL 0.80 *M* HAsc = 20.0 mmol HAsc40.0 mL 0.500 *M* OH<sup>-</sup> =  $20.0 \text{ mmol OH}^-$ 

Reaction of a weak acid (HAsc) and a strong base (NaOH) goes to *completion*:

All acid converted to r conjugate base: Asc<sup>-</sup> HASC +  $OH^-$  **(B)** H<sub>2</sub>O Asc<sup>-</sup> L 20.0 20.0 20.0 mmol = 0.3077 MС -20.0 +20.00 -20.0 65.0 mL Asc<sup>-</sup> F 0 0 20.0 mmol  $K_b = [HAsc][OH^-] = K_w/K_a$ pH determined by Asc<sup>-</sup> (weak base): [Asc<sup>-</sup>]  $H_2O \leftrightarrows HAsc + OH^-$ Asc⁻ + Г 0.3077  $x^{2}/(0.3077-x) = 1.25 \times 10^{-10}$ С -X **+X +X** F 0.3077-x Х Х Assume:  $x \ll 0.3$  $[OH^{-}] = x = 6.202 \times 10^{-6} M$  $x^2 = 3.846 \times 10^{-10}$ pOH = 5.207 $x = 6.202 \times 10^{-6}$  (assumption checks) pH = 14.00 - pOH = 8.79

4. a. **[10 pts]** Calculate the pH in a solution prepared by dissolving 0.050 mol of acetic acid ( $K_a = 1.76 \times 10^{-5}$ ) and 0.020 mol of sodium acetate in water and adjusting the volume to 500. mL.

HAc  $\leftrightarrows$  H<sup>+</sup> + Ac<sup>-</sup> This is a buffer! I 0.050 mol - 0.020 mol Use Henderson-Hasselbalch: pH = pK<sub>a</sub> + Log([Ac<sup>-</sup>]/[HAc]) Since vol is constant and x is pH = 4.7545 + Log(0.020/0.050) much less than 10<sup>-2</sup> M pH = 4.35655 = 4.36

b. **[15 pts]** 0.010 mol of NaOH is added to the buffer from part a of this question. Calculate the pH of the solution that results (assume that the total volume of the solution remains at 500. mL).

OH<sup>-</sup> will react completely with HAc:

 $OH^- + HAc \otimes H_2O + Ac^-$ I 0.010 0.050 0.020 C <u>-0.010 -0.010 +0.010</u> F 0 0.040 mol 0.030 mol

Still a buffer after reaction, so use H-H equation as in part a.

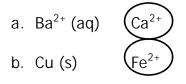
5. **[10 pts each]** Complete and balance (using the half-reaction method) the following redox reactions (NOTE: you must show ALL of your work in order to receive credit for your answer!):

a. In acidic solution: 
$$H_2S(aq) + NO_3^-(aq) \rightarrow S(s) + NO(g)$$

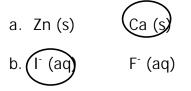
Ox:  $(H_2S \otimes S + 2H^+ + 2e^-) \times 3$ Red:  $(3e^- + 4H^+ + NO_3^- \otimes NO + 2H_2O) \times 2$ 

 $3H_2S + 8H^+ + 2NO_3^- + 6e^- \otimes 3S + 6H^+ + 2NO + 4H_2O + 6e^-$ 

Finally:  $3H_2S + 2H^+ + 2NO_3^- \otimes 3S + 2NO + 4H_2O$ 


b. <u>In basic solution</u>: Fe (s) + NiO<sub>2</sub> (s)  $\rightarrow$  Fe(OH)<sub>2</sub> (s) + Ni(OH)<sub>2</sub> (s)

Ox:  $2H_2O + Fe \otimes Fe(OH)_2 + 2H^+ + 2e^-$ Red:  $2e^- + 2H^+ + NiO_2 \otimes Ni(OH)_2$ 


 $2H_2O + Fe + 2e^- + 2H^+ + NiO_2 \otimes Fe(OH)_2 + 2H^+ + 2e^- + Ni(OH)_2$ 

Finally:  $2H_2O + Fe + NiO_2 \otimes Fe(OH)_2 + Ni(OH)_2$ 

6. **[5 pts]** Using the attached Table of Standard Reduction Potentials, circle the stronger oxidizing agent in each of the following pairs:



7. **[5 pts]** Using the attached Table of Standard Reduction Potentials, circle the stronger reducing agent in each of the following pairs:



8. For the following galvanic cell:

Fe (s)|Fe<sup>2+</sup> (aq)||Ag<sup>+</sup> (aq)|Ag (s)

a. **[5 pts]** Write the balanced chemical equation for the half-reaction occurring at the anode.

At the anode, oxidation occurs:

b. **[5 pts]** Write the balanced chemical equation for the half-reaction occurring at the cathode.

At the cathode, reduction occurs:

Ag⁺ + e⁻ ® Ag

c. **[10 pts]** Using the attached Table of Standard Reduction Potentials, calculate the cell voltage, assuming that all reactants and products are in their standard states.

 $E^{o}_{cell} = E^{o}_{cathode} - E^{o}_{anode} = E^{o}_{Ag} - E^{o}_{Fe} = 0.7996 - (-0.409)$  $E^{o}_{cell} = 1.2086 V = 1.209 V$ 

## Extra Credit! -- 10 pts

A universal acid/base indicator is easily made by boiling purple cabbage with the resulting aromatic solution producing dramatic color changes over a wide range of pH's. (Gee, this would make a really neat demo!)

Arrange the following five solutions in order of INCREASING pH and give the color of the cabbage indicator solution for each.

Pure Water 1.0 M NaOH 1.0 M HCI 1.0 M Acetic Acid (HAc) 1.0 M NH<sub>3</sub>

Recall that (some of us) DID see this spectacular demo ©:

| Low pH —<br>(acidic) |   |                |   |                   |   |                      |         | <ul> <li>High pH<br/>(basic)</li> </ul> |
|----------------------|---|----------------|---|-------------------|---|----------------------|---------|-----------------------------------------|
| HCI<br>(RED)         | R | HAc<br>(PI NK) | R | Water<br>(PURPLE) | R | NH₃<br><i>(GREEI</i> | ®<br>V) | NaOH<br>(YELLOW)                        |