CHEM 36 General Chemistry EXAM \#3

April 17, 2002
Name: \qquad Anne Sir Kei

INSTRUCTIONS: Read through the entire exam before you begin. Answer all of the questions. For questions involving calculations, show all of your work -- HOW you arrived at a particular answer is MORE important than the answer itself! Circle your final answer to numerical questions.

The entire exam is worth a total of 150 points. Attached are a periodic table and a formula sheet jam-packed with useful stuff. Good Luck!

Page	Possible Points	Points Earned
$\mathbf{2}$	25	25
$\mathbf{3}$	25	25
$\mathbf{4}$	25	25
$\mathbf{5}$	25	25
$\mathbf{6}$	20	20
$\mathbf{7}$	30	30
TOTAL:	$\mathbf{1 5 0}$	150

1. a. [15 pts] How many grams of aluminum hydroxide will saturate 50.0 mL of water at $25^{\circ} \mathrm{C}$? The solubility-product constant for the dissolution

$$
\mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s}) \leftrightarrows \mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq})
$$

is $K_{\text {sp }}=1.9 \times 10^{-33}$.
From the reaction stoicfiometry, we find: $\left[\mathcal{A} \boldsymbol{\beta}^{+}\right]=S$ and $[O \mathcal{H}]=3 S$ Plugging into the $\mathcal{K}_{\mathrm{s} p}$ expression: $\mathcal{K}_{\mathrm{s} p}=\left[\mathcal{A} \hat{\mu}^{+}\right][O \mathcal{H}]^{3}=1.9 \times 10^{-33}$

$$
\begin{aligned}
& S(3 S)^{3}=1.9 \times 10^{-33} \\
& 27 S^{4}=1.9 \times 10^{-33} \\
& \quad S=2.89633 \times 10^{-9} \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

Since $\mathcal{S}=\# \operatorname{mol} \mathcal{A l}(O \mathcal{H})_{3}$ soluble in $1.00 \mathcal{L}$ water, in 50.0 mL :
$0.0500 \mathcal{L} \times \frac{2.89633 \times 10^{-9} \operatorname{mol} \mathcal{A l}\left((O \mathcal{H})_{3}\right.}{\mathcal{L}} \times \frac{78.22 \operatorname{g~} \mathcal{A l}(O \mathcal{H})_{3}}{\operatorname{mol~} \mathcal{A l}(O \mathcal{H})_{3}}=1.1327 \times 10^{-8} \mathrm{~g}$
$1.1 \times 10^{-8} \mathrm{~g} \mathcal{A l}\left((O \mathcal{H})_{3}\right.$
b. [10 pts] Would $\mathrm{Al}(\mathrm{OH})_{3}$ be more soluble or less soluble in an acidic solution than in pure water? Explain.
$\mathcal{A l}(O \mathcal{H})_{3}$ is a base and so will dissolve in acid:

$$
\mathcal{A l}(O \mathcal{H})_{3}(s)+3 \mathcal{H}^{+}(a q) \rightarrow \mathcal{A} \hat{\mathcal{P}}^{+}(a q)+3 \mathcal{H}_{2} O \quad \text { (l) }
$$

So, $\mathcal{A l}\left((O \mathcal{H})_{3}\right.$ is more soluble in acidic solution.
2. The Mohr method is a technique for determining the amount of chloride ion in an unknown sample. It is based on the difference in solubility between silver chloride $\left(\mathrm{AgCl} ; \mathrm{K}_{\mathrm{sp}}=1.6 \times 10^{-10}\right)$ and silver chromate $\left(\mathrm{Ag}_{2} \mathrm{CrO}_{4} ; \mathrm{K}_{\mathrm{sp}}=1.9 \times 10^{-12}\right)$. In this method, one adds a small amount of chromate ion to a solution with unknown chloride concentration. By measuring the volume of AgNO_{3} added before the appearance of the red silver chromate, one can determine the amount of Cl^{-} originally present.
a. [10 pts] Suppose we have a solution that is $0.100 \mathrm{M} \mathrm{in}^{-} \mathrm{Cl}^{-}$and 0.00250 M in $\mathrm{CrO}_{4}{ }^{2-}$. If we add $0.100 \mathrm{M} \mathrm{AgNO}_{3}$ solution drop by drop, will AgCl or $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ precipitate first? J ustify your answer with a calculation.

We need to calculate $\left[\mathcal{A g}^{+}\right]$at which each compound will precipitate:

$$
\begin{aligned}
& \text { For } \underline{\mathcal{A g C l}:} \quad\left[\mathcal{A g}^{+}\right]=\mathcal{K}_{\mathrm{sp}} /[\mathrm{Cl}]=\frac{1.6 \times 10^{-10}}{0.100 \mathcal{M}}=1.6 \times 10^{-9} \mathfrak{M} \\
& \text { For } \underline{A g}_{2} \underline{\mathrm{CrO}}_{4}: \quad\left[\mathcal{A g}^{+}\right]^{2}=\mathcal{K}_{\mathrm{sp}} /\left[\mathrm{CrO}_{4}{ }^{2 .}\right]=\frac{1.9 \times 10^{-12}}{2.50 \times 10^{-3}} \mathfrak{M} \\
& {\left[\mathcal{A g}^{+}\right]=2.76 \times 10^{-5} \mathcal{M}} \\
& \text { Since }\left[\mathcal{A g}^{+}\right]_{\mathfrak{A g C l}^{\prime}}<\left[\mathcal{A g}^{+}\right]_{\mathfrak{A g}_{2} \text { Cro4 }}, \underline{\mathcal{A g C l}} \text { will precipitate first }
\end{aligned}
$$

b. [15 pts] When $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ first appears, what fraction of the Cl^{-}that was originally present remains?
$\mathcal{F r o m}$ part a, $\mathcal{A g}_{2} \mathrm{CrO}_{4}$ Gegins to precipitate when $\left[\mathcal{A g}^{+}\right]=2.76 \times 10^{-5} \mathfrak{M}$

So, $[\mathrm{Cl}]$ when $\left[\mathcal{A g}^{+}\right]=2.76 \times 10^{-5} \mathfrak{M}$:

$$
[C l]=\mathcal{K}_{s p} /\left[\mathcal{A g}^{+}\right]=\frac{1.6 \times 10^{-10}}{2.76 \times 10^{-5}}=5.80 \times 10^{-6} \mathcal{M}
$$

$\mathcal{F r a c t i o n ~ R e m a i n i n g ~}=\frac{[C l]_{\text {remaining }}}{[\mathcal{C l}]_{\text {initial }}}=\frac{5.80 \times 10^{-6} \mathcal{M}}{0.100 \mathcal{M}}=5.8 \times 10^{-5}$
3. Vitamin C is ascorbic acid $\left(\mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{6}\right)$ which has a $\mathrm{K}_{\mathrm{a}}=8.0 \times 10^{-5}$.
a. [10 pts] Calculate the pH of a $8.0 \times 10^{-1} \mathrm{M}$ solution of ascorbic acid.

6. [15 pts] 40.0 mL of a 0.500 M NaOH solution is added to 25.00 mL of the ascorbic acid solution described above. Calculate the pH of the resultant solution.
$25.00 \mathrm{~mL} 0.80 \mathcal{M} \mathcal{H A s c}=20.0 \mathrm{mmol} \mathcal{H A s c}$
$40.0 \mathrm{~mL} 0.500 \mathcal{M} O \mathcal{H}=20.0 \mathrm{mmol} O \mathcal{H}$
 completion:

$p \mathcal{H}$ determined by $\mathfrak{A s c}$ (weak base):

$$
\begin{aligned}
& \mathcal{K}_{6}=\frac{[\mathcal{H} \mathcal{A s c}][O \mathcal{H}]}{[\mathcal{A s c}]}=\mathcal{K}_{w} / \mathcal{K}_{a} \\
& x^{2} /(0.3077-x)=1.25 \times 10^{-10} \\
& \text { Assume }: x \ll 0.3
\end{aligned}
$$

$\begin{array}{ll}1 & 0.3077\end{array}$ $\mathcal{A s c}+\mathcal{H}_{2} \mathrm{O} \leftrightarrows \mathcal{H A s c}+O \mathcal{H}$

C
E

$-x$	$+x$	$+x$
$0.3077 \cdot x$	x	x

$[O \mathcal{H}]=\chi=6.202 \chi 10^{-6} \mathrm{M}$

$p O \mathcal{H}=5.207$
$x^{2}=3.846 \times 10^{-10}$
$p \mathcal{H}=14.00-p O \mathcal{H}=8.79$
4. a. [10 pts] Calculate the pH in a solution prepared by dissolving 0.050 mol of acetic acid ($\mathrm{K}_{\mathrm{a}}=1.76 \times 10^{-5}$) and 0.020 mol of sodium acetate in water and adjusting the volume to $500 . \mathrm{mL}$.

$\mathscr{H A c} \quad \leftrightarrows \mathcal{H}^{+}+\mathcal{A c}^{\text {c }}$	This is a buffer!
0.050 mol - 0.020 mol	Use Henderson- Hasselbalch:
$p \mathcal{H}=p \mathcal{K}_{6}+\log ([\mathfrak{A c}] /[[\mathcal{H} \mathfrak{A c}])$	Since vol is constant and x is
$p \mathcal{H}=4.7545+\log (0.020 / 0.050)$	much less than $10^{-2} \mathrm{M}$
$p \mathcal{H}=4.7545-0.39794$	
$p \mathscr{H}=4.35655=4.36$	

b. [15 pts] 0.010 mol of NaOH is added to the buffer from part a of this question. Calculate the pH of the solution that results (assume that the total volume of the solution remains at 500 mL).
$O \mathcal{H}$ will react completely with $\mathcal{H A c}$:

Still a buffer after reaction, so use \mathcal{H} - \mathcal{H} equation as in part a.
5. [10 pts each] Complete and balance (using the half-reaction method) the following redox reactions (NOTE: you must show ALL of your work in order to receive credit for your answer!):
a. In acidic solution: $\mathrm{H}_{2} \mathrm{~S}(\mathrm{aq})+\mathrm{NO}_{3}{ }^{-}(\mathrm{aq}) \rightarrow \mathrm{S}(\mathrm{s})+\mathrm{NO}(\mathrm{g})$

OX: $\quad\left(\mathcal{H}_{2} S \rightarrow S+2 \mathcal{H}^{+}+2 e^{-}\right) \quad \chi 3$
Red: $\underline{\left(3 e^{-}+4 \mathcal{H}^{+}+\mathcal{N O}_{3} \rightarrow \mathcal{N} O+2 \mathcal{H}_{2} O\right) \quad \chi 2}$
$3 \mathcal{H}_{2} \mathrm{~S}+8 \mathcal{H}^{+}+2 \mathfrak{N} \mathrm{~N}_{3}^{-}+6 e^{-} \rightarrow 3 \mathcal{S}+6 \mathcal{H}^{+}+2 \mathcal{N} O+4 \mathcal{H}_{2} \mathrm{O}+6 e$
Finally:

$$
3 \mathcal{H}_{2} \mathrm{~S}+2 \mathcal{H}^{+}+2 \mathfrak{N O}_{3}^{-} \rightarrow 3 \mathcal{S}+2 \mathfrak{N O}+4 \mathcal{H}_{2} \mathrm{O}
$$

b. In basic solution: $\mathrm{Fe}(\mathrm{s})+\mathrm{NiO}_{2}(\mathrm{~s}) \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{Ni}(\mathrm{OH})_{2}(\mathrm{~s})$
O x: $\quad 2 \mathcal{H}_{2} \mathrm{O}+\mathcal{F e} \rightarrow \mathcal{F e}(O \mathcal{H})_{2}+2 \mathcal{H}^{+}+2 e$
$\operatorname{Red}: \underline{2 e^{-}+2 \mathcal{H}^{+}+\mathfrak{N i O}_{2} \rightarrow \mathfrak{N i}(O \mathcal{H})_{2}}$ \qquad

$$
2 \mathcal{H}_{2} \mathrm{O}+\mathcal{F e}+2 e^{-}+2 \mathcal{H}^{+}+\mathcal{N} i O_{2} \rightarrow \mathcal{F e}(O \mathcal{H})_{2}+2 \mathcal{H}^{+}+2 e^{-}+\mathcal{N} i(O \mathcal{H})_{2}
$$

Finally: $2 \mathcal{H}_{2} \mathrm{O}+\mathcal{F e}+\mathfrak{N i O}_{2} \rightarrow \mathcal{F e}(\mathrm{OH})_{2}+\mathfrak{N i}(\mathrm{OH})_{2}$
6. [5 pts] Using the attached Table of Standard Reduction Potentials, circle the stronger oxidizing agent in each of the following pairs:
a. $\mathrm{Ba}^{2+}(\mathrm{aq})$

b. $\mathrm{Cu}(\mathrm{s})$
Fe^{2+}
7. [5 pts] Using the attached Table of Standard Reduction Potentials, circle the stronger reducing agent in each of the following pairs:
a. $\mathrm{Zn}(\mathrm{s})$

b. $1-(\mathrm{ag})$
$F^{-}(\mathrm{aq})$
8. For the following galvanic cell:

$$
\mathrm{Fe}(\mathrm{~s})\left|\mathrm{Fe}^{2+}(\mathrm{aq})\right|\left|\mathrm{Ag}^{+}(\mathrm{aq})\right| \mathrm{Ag}(\mathrm{~s})
$$

a. [5 pts] Write the balanced chemical equation for the half-reaction occurring at the anode.

At the anode, oxidation occurs:

$$
\mathcal{F e} \rightarrow \mathcal{F e}^{2+}+2 e
$$

b. [5 pts] Write the balanced chemical equation for the half-reaction occurring at the cathode.

At the cathode, reduction occurs:

$$
\mathcal{A g}^{+}+e^{-} \rightarrow \mathcal{A g}
$$

c. [10 pts] Using the attached Table of Standard Reduction Potentials, calculate the cell voltage, assuming that all reactants and products are in their standard states.

$$
\begin{aligned}
& \mathcal{E}_{\text {cell }}^{o}=\mathscr{E}_{\text {cathode }}^{0}-\mathcal{E}_{\text {anode }}^{o}=\mathcal{E}_{\mathcal{A g}_{g}}^{0}-\mathcal{E}_{\mathcal{F}_{e}}^{o}=0.7996-(.0 .409) \\
& \mathcal{E}_{\text {cell }}^{o}=1.2086 \mathrm{~V}=1.209 \mathrm{~V}
\end{aligned}
$$

Extra Credit! -- 10 pts

A universal acid/base indicator is easily made by boiling purple cabbage with the resulting aromatic solution producing dramatic color changes over a wide range of pH 's. (Gee, this would make a really neat demo!)

Arrange the following five solutions in order of INCREASING pH and give the color of the cabbage indicator solution for each.

Pure Water
1.0 M NaOH
1.0 M HCl
1.0 M Acetic Acid (HAc)
$1.0 \mathrm{M} \mathrm{NH}_{3}$
Recall that (some of us) $\mathcal{D I D}$ see this spectacular demo Θ :
Low $p \mathcal{H}$
(acidic) $\underset{\text { (basic) }}{\mathcal{H i g h} p \mathcal{H}}$

$\mathcal{H C l}$	$\mathcal{H} \mathfrak{A c}$	Water	\rightarrow	$\mathcal{N} \mathcal{H}_{3} \rightarrow$	$\mathcal{N a O} \mathcal{H}$
(RED)	(PINNK)	(PURPPLE)		$(\mathcal{G R E E N})$	(EELLO W $^{\text {(}}$

