CHEM 36 General Chemistry EXAM #3

April 17, 2002

INSTRUCTIONS: Read through the entire exam before you begin. Answer all of the questions. For questions involving calculations, show **all** of your work -- **HOW** you arrived at a particular answer is **MORE** important than the answer itself! Circle your final answer to numerical questions.

The entire exam is worth a total of 150 points. Attached are a periodic table and a formula sheet jam-packed with useful stuff. Good Luck!

Page	Possible Points	Points Earned
2	25	
3	25	
4	25	
5	25	
6	20	
7	30	_
TOTAL:	150	

LOOK AT THESE UNSOLVED PROBLEMS. HERE'S A NUMBER IN MORTAL COMBAT WITH ANOTHER. ONE OF THEM IS GOING TO GET SUBTRACTED, BUT WHY? HOW? WHAT WILL BE LEFT OF HIM?

1. a. **[15 pts]** How many grams of aluminum hydroxide will saturate 50.0 mL of water at 25 $^{\circ}$ C? The solubility-product constant for the dissolution

$$AI(OH)_3$$
 (s) \leftrightarrows AI^{3+} (aq) + $3OH^{-}$ (aq)

is
$$K_{sp} = 1.9 \times 10^{-33}$$
.

b. **[10 pts]** Would $AI(OH)_3$ be **more soluble** or **less soluble** in an *acidic* solution than in pure water? Explain.

- 2. The Mohr method is a technique for determining the amount of chloride ion in an unknown sample. It is based on the difference in solubility between silver chloride (AgCI; $K_{sp} = 1.6 \times 10^{-10}$) and silver chromate (Ag₂CrO₄; $K_{sp} = 1.9 \times 10^{-12}$). In this method, one adds a small amount of chromate ion to a solution with unknown chloride concentration. By measuring the volume of AgNO₃ added before the appearance of the red silver chromate, one can determine the amount of Cloriginally present.
 - a. **[10 pts]** Suppose we have a solution that is 0.100 M in Cl⁻ and 0.00250 M in CrO_4^{2-} . If we add 0.100 M AgNO₃ solution drop by drop, will AgCl or Ag₂CrO₄ precipitate first? Justify your answer with a calculation.

b. **[15 pts]** When Ag₂CrO₄ first appears, what fraction of the Cl⁻ that was originally present remains?

- 3. Vitamin C is ascorbic acid (HC₆H₇O₆) which has a $K_a = 8.0 \text{ x } 10^{-5}$.
 - a. **[10 pts]** Calculate the pH of a 8.0 x 10⁻¹ M solution of ascorbic acid.

b. **[15 pts]** 40.0 mL of a 0.500 M NaOH solution is added to 25.00 mL of the ascorbic acid solution described above. Calculate the pH of the resultant solution.

b. **[15 pts]** 0.010 mol of NaOH is added to the buffer from part a of this question. Calculate the pH of the solution that results (assume that the total volume of the solution remains at 500. mL).

- 5. **[10 pts each]** Complete and balance (using the half-reaction method) the following redox reactions (NOTE: you must show ALL of your work in order to receive credit for your answer!):
 - a. In acidic solution: H_2S (aq) + NO_3^- (aq) $\rightarrow S$ (s) + NO (g)

b. In basic solution: Fe (s) + NiO_2 (s) \rightarrow Fe(OH)₂ (s) + $Ni(OH)_2$ (s)

- 6. **[5 pts]** Using the attached Table of Standard Reduction Potentials, circle the stronger oxidizing agent in each of the following pairs:
 - a. Ba^{2+} (aq) Ca^{2+}
 - b. Cu (s) Fe^{2+}
- 7. **[5 pts]** Using the attached Table of Standard Reduction Potentials, circle the stronger reducing agent in each of the following pairs:
 - a. Zn (s) Ca (s)
 - b. I^{-} (aq) F^{-} (aq)
- 8. For the following galvanic cell:

Fe (s)
$$|Fe^{2+}$$
 (aq) $||Ag^{+}$ (aq) $|Ag$ (s)

a. **[5 pts]** Write the balanced chemical equation for the half-reaction occurring at the anode.

- b. **[5 pts]** Write the balanced chemical equation for the half-reaction occurring at the cathode.
- c. **[10 pts]** Using the attached Table of Standard Reduction Potentials, calculate the cell voltage, assuming that all reactants and products are in their standard states.

Extra Credit! -- 10 pts

A universal acid/base indicator is easily made by boiling purple cabbage with the resulting aromatic solution producing dramatic color changes over a wide range of pH's. (Gee, this would make a really neat demo!)

Arrange the following five solutions in order of INCREASING pH and give the color of the cabbage indicator solution for each.

Pure Water
1.0 M NaOH
1.0 M HCI
1.0 M Acetic Acid (HAc)
1.0 M NH₃