CHEM 36 General Chemistry EXAM \#3

April 17, 2002
Name: \qquad

INSTRUCTIONS: Read through the entire exam before you begin. Answer all of the questions. For questions involving calculations, show all of your work -- HOW you arrived at a particular answer is MORE important than the answer itself! Circle your final answer to numerical questions.

The entire exam is worth a total of 150 points. Attached are a periodic table and a formula sheet jam-packed with useful stuff. Good Luck!

Page	Possible Points	Points Earned
$\mathbf{2}$	25	
$\mathbf{3}$	25	
$\mathbf{4}$	25	
$\mathbf{5}$	25	
$\mathbf{6}$	20	
$\mathbf{7}$	30	
TOTAL:	$\mathbf{1 5 0}$	

1. a. [15 pts] How many grams of aluminum hydroxide will saturate 50.0 mL of water at $25^{\circ} \mathrm{C}$? The solubility-product constant for the dissolution

$$
\mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s}) \leftrightarrows \mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq})
$$

is $K_{\text {sp }}=1.9 \times 10^{-33}$.
b. [10 pts] Would $\mathrm{Al}(\mathrm{OH})_{3}$ be more soluble or less soluble in an acidic solution than in pure water? Explain.
2. The Mohr method is a technique for determining the amount of chloride ion in an unknown sample. It is based on the difference in solubility between silver chloride $\left(\mathrm{AgCl} ; \mathrm{K}_{\mathrm{sp}}=1.6 \times 10^{-10}\right)$ and silver chromate $\left(\mathrm{Ag}_{2} \mathrm{CrO}_{4} ; \mathrm{K}_{\mathrm{sp}}=1.9 \times 10^{-12}\right)$. In this method, one adds a small amount of chromate ion to a solution with unknown chloride concentration. By measuring the volume of AgNO_{3} added before the appearance of the red silver chromate, one can determine the amount of Cl^{-} originally present.
a. [10 pts] Suppose we have a solution that is $0.100 \mathrm{M} \mathrm{in}^{-} \mathrm{Cl}^{-}$and 0.00250 M in $\mathrm{CrO}_{4}{ }^{2-}$. If we add $0.100 \mathrm{M} \mathrm{AgNO}_{3}$ solution drop by drop, will AgCl or $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ precipitate first? J ustify your answer with a calculation.
b. [15 pts] When $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ first appears, what fraction of the Cl^{-}that was originally present remains?
3. Vitamin C is ascorbic acid $\left(\mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{6}\right)$ which has a $\mathrm{K}_{\mathrm{a}}=8.0 \times 10^{-5}$.
a. [10 pts] Calculate the pH of a $8.0 \times 10^{-1} \mathrm{M}$ solution of ascorbic acid.
b. [15 pts] 40.0 mL of a 0.500 M NaOH solution is added to 25.00 mL of the ascorbic acid solution described above. Calculate the pH of the resultant solution.
4. a. [10 pts] Calculate the pH in a solution prepared by dissolving 0.050 mol of acetic acid ($K_{a}=1.76 \times 10^{-5}$) and 0.020 mol of sodium acetate in water and adjusting the volume to 500 mL .
b. [15 pts] 0.010 mol of NaOH is added to the buffer from part a of this question. Calculate the pH of the solution that results (assume that the total volume of the solution remains at 500 mL).
5. [10 pts each] Complete and balance (using the half-reaction method) the following redox reactions (NOTE: you must show ALL of your work in order to receive credit for your answer!):
a. In acidic solution: $\mathrm{H}_{2} \mathrm{~S}(\mathrm{aq})+\mathrm{NO}_{3}{ }^{-}(\mathrm{aq}) \rightarrow \mathrm{S}(\mathrm{s})+\mathrm{NO}(\mathrm{g})$
b. In basic solution: $\mathrm{Fe}(\mathrm{s})+\mathrm{NiO}_{2}(\mathrm{~s}) \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{Ni}(\mathrm{OH})_{2}(\mathrm{~s})$
6. [5 pts] Using the attached Table of Standard Reduction Potentials, circle the stronger oxidizing agent in each of the following pairs:
a. $\mathrm{Ba}^{2+}(\mathrm{aq}) \quad \mathrm{Ca}^{2+}$
b. $\mathrm{Cu}(\mathrm{s}) \quad \mathrm{Fe}^{2+}$
7. [5 pts] Using the attached Table of Standard Reduction Potentials, circle the stronger reducing agent in each of the following pairs:
a. $\mathrm{Zn}(\mathrm{s}) \quad \mathrm{Ca}(\mathrm{s})$
b. $I^{-}(a q) \quad F^{-}(a q)$
8. For the following galvanic cell:

$$
\mathrm{Fe}(\mathrm{~s})\left|\mathrm{Fe}^{2+}(\mathrm{aq})\right|\left|\mathrm{Ag}^{+}(\mathrm{aq})\right| \mathrm{Ag}(\mathrm{~s})
$$

a. [5 pts] Write the balanced chemical equation for the half-reaction occurring at the anode.
b. [5 pts] Write the balanced chemical equation for the half-reaction occurring at the cathode.
c. [10 pts] Using the attached Table of Standard Reduction Potentials, calculate the cell voltage, assuming that all reactants and products are in their standard states.

Extra Credit! -- 10 pts

A universal acid/base indicator is easily made by boiling purple cabbage with the resulting aromatic solution producing dramatic color changes over a wide range of pH 's. (Gee, this would make a really neat demo!)

Arrange the following five solutions in order of INCREASING pH and give the color of the cabbage indicator solution for each.

Pure Water
1.0 M NaOH
1.0 M HCl
1.0 M Acetic Acid (HAc)
$1.0 \mathrm{M} \mathrm{NH}_{3}$

