CHEM 36 General Chemistry EXAM #2

March 13, 2002

Name: Key

INSTRUCTIONS: Read through the entire exam before you begin. Answer all of the questions. For questions involving calculations, show **all** of your work -- **HOW** you arrived at a particular answer is **MORE** important than the answer itself! Circle your final answer to numerical questions.

The entire exam is worth a total of 150 points. Attached are a periodic table and a formula sheet jam-packed with useful stuff. Good Luck!

Page	Possible Points	Points Earned
2	25	25
3	30	30
4	25	25
5	45	45
6	25	25
TOTAL:	150	150

1. For the dissociation of acetic acid in water:

 CH_3COOH (aq) \leftrightarrows H^+ (aq) + CH_3COO^- (aq)

at 25.0°C, $K_a = 1.76 \times 10^{-5}$.

a. **[10 pts]** Calculate ΔG° (kJ/mol) for this reaction.

 $\mathbf{D}G^{\circ} = -RTLnK$ = -(8.3145 J/mol-K)(298.15 K)Ln(1.76 x 10⁻⁵) = 2.7139 x 10⁴ J/mol x 10⁻³ kJ/J = 27.139 kJ/mol

b. **[5 pts]** At equilibrium, what is the value of ΔG ?

For any system at equilibrium: **D**G = 0

2. **[10 pts]** Calculate the *molarity* of an aqueous acetic acid solution that is 36.0% acetic acid (by mass). The density of the solution is 1.045 g/mL and the molecular weight of acetic acid is 60.05 g/mol.

36.0 g HAcx1 mol HAcx1.045 g solnx1000 mL=6.2648 mol HAc/L100.0 g soln60.05 g HAcmL solnL

= <u>6.26 M HAc</u>

3. **[15 pts]** Given equilibrium constants for reactions 1 and 2, compute K₃:

(1) $H_2O(I) + H_2O(I) \iff H_3O^+(aq) + OH^-(aq)$ (2) $NH_4^+(aq) + H_2O(I) \iff NH_3(aq) + H_3O^+(aq)$ (3) $NH_3(aq) + H_2O(I) \iff NH_4^+(aq) + OH^-(aq)$ $K_3 = ???$

Reaction (1) - Reaction (2) = Reaction (3)

So: $K_3 = K_1 (1/K_2) = 1.0 \times 10^{-14}/5.7 \times 10^{-10} = 1.754 \times 10^{-5} = 1.8 \times 10^{-5}$

4. Chloroacetic acid dissociates in aqueous solution to produce the chloroacetate and hydronium ions:

 $CH_2CICOOH$ (aq) + H_2O (I) \Leftrightarrow CH_2CICOO^- (aq) + H_3O^+ (aq)

a. **[10 pts]** Compute K at 25.0 °C. given the following set of equilibrium concentrations:

 $[CH_2CICOOH] = 0.0888 M$ $[CH_2CICOO^-] = 0.0112 M$ $[H_3O^+] = 0.0112 M$

 $K = \underline{[CH_2CICOO^-][H_3O^+]} = \underline{(0.0112)(0.0112)} = 1.4126 \times 10^{-3} = \boxed{1.41 \times 10^{-3}}$ [CH_2CICOOH] (0.0888)

b. **[5 pts]** Calculate the pH of this solution.

 $pH = -Log[H_3O^+] = -Log(0.112) = 1.95078 = 1.95078$

5. Consider the following endothermic ($\Delta H^{\circ} = 41.18 \text{ kJ/mol}$) reaction:

$$CO_2(g) + H_2(g) \leftrightarrows CO(g) + H_2O(I)$$

At 25.0 °C, $K = 3.2 \times 10^{-4}$.

If we start with 1.0 atm of each of the gas phase species in a closed vessel containing some water:

a. **[10 pts]** Is the system at equilibrium? If not, will the reaction proceed to the *left* or to the *right* in order to reach equilibrium?

$$Q = \underline{P_{CO}}_{P_{CO2}} P_{H2} = \underline{(1.0)}_{P_{CO2}} = 1.0 >> K$$

If Q > K, then there is an excess of CO and reaction will shift to the:

b. **[15 pts]** Calculate the partial pressure of H_2 (g) for the system at equilibrium.

$$3.2 \times 10^{-4} = (1.00 - x) (1.00 + x)(1.00 + x)$$

A quadratic: $3.2 \times 10^{-4} x^2 + 1.00064 x - 9.9968 \times 10^{-1} = 0$

x = 0.998714

 $P_{H2} = 1.00 + x = 1.998714 = 2.0 atm$

- c. [5 pts each] How will the equilibrium partial pressure of H₂ (g) be affected by the following:
 - CO_2 (g) is added to the system (at constant volume). İ.

	_	-			
	Increase	Decrease	No Change	(circle one)	
	ii. The volume of the reaction vessel is halved.				
	Increase	Decrease	No Change	(circle one)	
iii. Argon gas is added to the system (at constant volume).					
	Increase	Decrease	No Change	(circle one)	
iv. The temperature of the system is increased.					
	Increase	Decrease	No Change	(circle one)	
6a. [10 pts] Arrange the following acids in order of increasing strength (briefly explain your reasoning): CH ₃ CH ₂ OH, HClO ₄ , CH ₃ COOH, H ₂ O					
$CH_3CH_2OH < H_2O < CH_3CQOH < HCIO_4$ strong acid (most # O)					

only one EN O	OH ⁻ can stablize	two EN O
to accommodate negative charge	charge with one O and a hydrogen	to accommodate negative charge

b. **[10 pts]** Identify the corresponding conjugate bases for these acids:

<u>Acid</u> CH ₃ CH ₂ OH	Conjugate Base CH ₃ CH ₂ O ⁻
HCIO ₄	CIO4-
CH₃COOH	CH₃COO [−]
H_3O^+	H ₂ O

c. **[5 pts]** Arrange the conjugate bases in order of increasing strength.

 CIO_4^- < H_2O < CH_3COO^- < $CH_3CH_2O^-$

7. **[5 pts each]** Given the K_a values for the following acids:

CH ₂ CICOOH (Chloroacetic Acid):	$K_a = 1.4 \times 10^{-3}$
C ₆ H ₅ COOH (Benzoic Acid)	$K_a = 6.5 \times 10^{-5}$
HCN (Hydrocyanic Acid)	$K_a = 6.2 \times 10^{-10}$

a. Which acid is the weakest?

HCN has the smallest K_{a} , so it is the weakest acid

b. Write the acid dissociation equilibrium reaction for the acid you identified in part a.

HCN (aq) + H_2O (l) \Rightarrow CN⁻ (aq) + H_3O^+ (aq)

c. Which of the conjugate bases for these acids is the weakest?

The conjugate base of the strongest acid will be the weakest:

CH₂CICOOH is the strongest acid,

so CH_2CICOO^- is the weakest conjugate base

d. Calculate the value of K_b for the base you identified in part c.

For a conjugate acid/base pair: $K_aK_b = K_w$

So:
$$K_b = K_w/K_a = 1.0 \times 10^{-14}/1.4 \times 10^{-3}$$

= 7.14 x 10⁻¹²
= 7.1 x 10⁻¹²

e. Write the base dissociation (K_b) equilibrium reaction for the base you identified in part c.

 CH_2CICOO^- (aq) + H_2O (l) \Rightarrow $CH_2CICOOH$ (aq) + OH^- (aq)

Extra Credit! -- 10 pts

The triple bond in the N₂ molecule is very strong, but at high enough temperatures even it breaks down. At 5000 K, when the total pressure exerted by a sample of nitrogen is 1.00 atm, N₂ (g) is 0.65% dissociated at equilibrium:

$$N_2$$
 (g) \leftrightarrows 2 N (g)

At 6000 K, with the same total pressure, the proportion of N_2 (g) dissociated at equilibrium rises to 11.6%. Calculate the ΔH of this reaction.

We need K at 5000 K (T_1) and at 6000 K (T_2):

At 5000 K: N₂
$$\Rightarrow$$
 2N
I 1.00 -
C -0.0065 +2(0.0065)
E 0.9935 0.0130
So: K₁ = (P_N)² = (0.0130)² = 1.70 x 10⁻⁴
P_{N2} 0.9935
At 6000 K: N₂ \Rightarrow 2N
I 1.00 -
C -0.116 +2(0.116)
E 0.884 0.232
So: K₂ = (P_N)² = (0.232)² = 6.09 x 10⁻²
P_{N2} 0.884

Now, plug into Van't Hoff equation and solve for **DH**:

$$Ln(K_2/K_1) = -(\mathbf{D}H^{\circ}/R)[(1/T_2) - (1/T_1)]$$

5.8812 = -**D**H^{\opera} (-4.0091 x 10⁻⁶)
DH^{\opera} = 1.467 x 10⁶ J **(a)** $\frac{1.5 x 10^3 kJ}{kJ}$