CHEM 36 General Chemistry EXAM \#2

March 13, 2002
Name: \qquad Key

INSTRUCTIONS: Read through the entire exam before you begin. Answer all of the questions. For questions involving calculations, show all of your work -- HOW you arrived at a particular answer is MORE important than the answer itself! Circle your final answer to numerical questions.

The entire exam is worth a total of 150 points. Attached are a periodic table and a formula sheet jam-packed with useful stuff. Good

Page	Possible Points	Points Earned
$\mathbf{2}$	25	25
$\mathbf{3}$	30	30
$\mathbf{4}$	25	25
$\mathbf{5}$	45	45
$\mathbf{6}$	$\mathbf{2 5}$	25
TOTAL:	$\mathbf{1 5 0}$	150

1. For the dissociation of acetic acid in water:

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \leftrightarrows \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})
$$

at $25.0^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{a}}=1.76 \times 10^{-5}$.
a. [10 pts] Calculate $\Delta \mathrm{G}^{\circ}(\mathrm{kJ} / \mathrm{mol})$ for this reaction.

$$
\begin{aligned}
\Delta \mathcal{G}^{o} & =-\operatorname{RI} \operatorname{LnK} \\
& =-(8.3145 \mathrm{~g} / \operatorname{mol}-\mathcal{X})(298.15 \mathcal{X}) \operatorname{Ln}\left(1.76 \times 10^{-5}\right) \\
& =2.7139 \times 10^{4} \mathrm{~g} / \operatorname{mol} \times 10^{-3} \mathrm{~kg} / \mathrm{g}=27.139 \mathrm{~kg} / \mathrm{mol}
\end{aligned}
$$

b. [5 pts] At equilibrium, what is the value of $\Delta \mathrm{G}$?

For any system at equilibrium: $\underline{\boldsymbol{\Delta}} \boldsymbol{G}=\mathbf{0}$
2. [10 pts] Calculate the molarity of an aqueous acetic acid solution that is 36.0% acetic acid (by mass). The density of the solution is $1.045 \mathrm{~g} / \mathrm{mL}$ and the molecular weight of acetic acid is $60.05 \mathrm{~g} / \mathrm{mol}$.
$\begin{aligned} \frac{36.0 \mathrm{~g} \mathrm{HAc}}{100.0 \mathrm{~g} \mathrm{soln}} \times \frac{1 \mathrm{~mol} \mathcal{H A c}}{60.05 \mathrm{~g} \mathrm{HAc}} \times \frac{1.045 \mathrm{~g} \mathrm{soln}}{m L \operatorname{soln}} \times \frac{1000 \mathrm{~mL}}{L} & =6.2648 \mathrm{~mol} \mathrm{HAc} / \mathrm{L} \\ & =6.26 \mathfrak{M H A c}\end{aligned}$
3. [15 pts] Given equilibrium constants for reactions 1 and 2 , compute K_{3} :
(1) $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \quad \mathrm{K}_{1}=1.0 \times 10^{-14}$
(2) $\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrows \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \quad \mathrm{K}_{2}=5.7 \times 10^{-10}$
(3) $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrows \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \quad \mathrm{K}_{3}=$? ??

Reaction (1) - Reaction (2) = Reaction (3)
$\mathcal{H}_{2} \mathrm{O}(\mathrm{l})+\mathcal{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrows \mathcal{H}_{3} \mathrm{O}^{+}(a q)+O \mathcal{H}^{-}(a q) \quad \mathcal{K}_{1}$

| $\mathcal{N} \mathcal{H}_{3}(a q)+\mathcal{H}_{3} O^{+}(a q)$ | $\leftrightarrows \mathcal{N H}_{4}{ }^{+}(a q)+\mathcal{H}_{2} O(l)$ | $1 / \mathcal{K}_{2}$ |
| :--- | :--- | :--- | :--- |
| $\mathcal{N} \mathcal{H}_{3}(a q)+\mathcal{H}_{2} O(l) \leftrightarrows \mathcal{N} \mathcal{H}_{4}{ }^{+}(a q)+O \mathcal{H}^{-}(a q)$ | K_{3} | |

So: $\mathcal{K}_{3}=\mathcal{K}_{1}\left(1 / \mathcal{K}_{2}\right)=1.0 \times 10^{-14} / 5.7 \times 10^{-10}=1.754 \times 10^{-5}=1.8 \times 10^{-5}$
4. Chloroacetic acid dissociates in aqueous solution to produce the chloroacetate and hydronium ions:

$$
\mathrm{CH}_{2} \mathrm{ClCOOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrows \mathrm{CH}_{2} \mathrm{ClCOO}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

a. [10 pts] Compute K at $25.0^{\circ} \mathrm{C}$. given the following set of equilibrium concentrations:

$$
\begin{aligned}
& {\left[\mathrm{CH}_{2} \mathrm{ClCOOH}\right]=0.0888 \mathrm{M}} \\
& {\left[\mathrm{CH}_{2} \mathrm{ClCOO}^{-}\right]=0.0112 \mathrm{M}} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.0112 \mathrm{M}}
\end{aligned}
$$

$$
\mathcal{K}=\left[\mathrm{CH}_{2} \frac{\mathrm{ClCOO} \backslash\left[\mathcal{H}_{3} \underline{\left.\mathrm{O}^{+}\right]}=\underline{(0.0112)(0.0112)}=1.4126 \times 10^{-3}=1.41 \times 10^{-3}\right.}{1.4}\right.
$$

$$
\left[\mathrm{CH}_{2} \mathrm{ClCOOH}\right] \quad(0.0888)
$$

b. [5 pts] Calculate the pH of this solution.

$$
p \mathcal{H}=-\log \left[\mathcal{H}_{3} \mathrm{O}^{+}\right]=\cdot \log (0.112)=1.95078=.95
$$

5. Consider the following endothermic $\left(\Delta \mathrm{H}^{\circ}=41.18 \mathrm{~kJ} / \mathrm{mol}\right)$ reaction:

$$
\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

At $25.0^{\circ} \mathrm{C}, \mathrm{K}=3.2 \times 10^{-4}$.
If we start with 1.0 atm of each of the gas phase species in a closed vessel containing some water:
a. [10 pts] Is the system at equilibrium? If not, will the reaction proceed to the left or to the right in order to reach equilibrium?
$Q=\frac{\mathcal{P}_{\mathrm{CO}}}{\mathcal{P}_{\mathrm{CO} 2} \mathcal{P}_{\mathcal{H} 2}}=\frac{(1.0)}{(1.0)(1.0)}=1.0 \gg \mathcal{K}$
If $Q>\mathcal{K}$ then there is an excess of $C O$ and reaction will shift to the:
Left
Right
No Change
(circle one)
b. [15 pts] Calculate the partial pressure of $\mathrm{H}_{2}(\mathrm{~g})$ for the system at equilibrium.

```
        \(\mathrm{CO}_{2}(\mathrm{~g})+\mathcal{H}_{2}(\mathrm{~g}) \quad \leftrightarrows \quad \mathrm{CO}(\mathrm{g})+\mathcal{H}_{2} \mathrm{O} \quad(\mathrm{l})\)
\(\begin{array}{llll}\text { Initial } & 1.00 & 1.00 & 1.00\end{array}\)
Change \(+x+x-x\)
Equilibrium \(1.00+\chi \quad 1.00+\chi \quad 1.00-x\)
\(3.2 \times 10^{-4}=\frac{(1.00-x)}{(1.00+x)(1.00+x)}\)
\(\mathcal{A}\) quadratic: \(3.2 \times 10^{-4} x^{2}+1.00064 x-9.9968 \times 10^{-1}=0\)
    \(\chi=0.998714\)
\(\mathcal{P}_{\mathscr{H} 2}=1.00+\chi=1.998714=2.0 \mathrm{~atm}\)
```

c. [5 pts each] How will the equilibrium partial pressure of $\mathrm{H}_{2}(\mathrm{~g})$ be affected by the following:
i. $\quad \mathrm{CO}_{2}(\mathrm{~g})$ is added to the system (at constant volume).
Increase Decrease No Change (circle one)
ii. The volume of the reaction vessel is halved.

Increase Decrease No Change (circle one)
iii. Argon gas is added to the system (at constant volume).
Increase Decrease (No Change (circle one)
iv. The temperature of the system is increased.

Increase Decrease No Change (circle one)
6a. [10 pts] Arrange the following acids in order of increasing strength (briefly explain your reasoning):

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{HClO}_{4}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{H}_{2} \mathrm{O}
$$

only one $\operatorname{EN} O$
to accommodate
negative charge
$O \mathcal{H}$ can stablize two $\mathcal{E N} O$
charge with one O to accommodate
and a fydrogen negative charge
b. [10 pts] Identify the corresponding conjugate bases for these acids:

$\frac{\text { Acid }}{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}}$	$\frac{\text { Conjugate Base }}{\mathrm{CH}_{3} \mathcal{C H}_{2} \mathrm{O}^{-}}$
HClO_{4}	ClO_{4}^{-}
$\mathrm{CH}_{3} \mathrm{COOH}$	$\mathrm{CH}_{3} \mathrm{COO}$
$\mathrm{H}_{3} \mathrm{O}^{+}$	$\mathcal{H}_{2} \mathrm{O}$

c. [5 pts] Arrange the conjugate bases in order of increasing strength.

$$
\mathrm{ClO}_{4}<\mathcal{H}_{2} \mathrm{O}<\mathrm{CH}_{3} \mathrm{COO}^{\circ}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}
$$

7. [5 pts each] Given the K_{a} values for the following acids:
$\mathrm{CH}_{2} \mathrm{ClCOOH}$ (Chloroacetic Acid): $\mathrm{K}_{\mathrm{a}}=1.4 \times 10^{-3}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ (Benzoic Acid)
$\mathrm{K}_{\mathrm{a}}=6.5 \times 10^{-5}$
HCN (Hydrocyanic Acid)
$\mathrm{K}_{\mathrm{a}}=6.2 \times 10^{-10}$
a. Which acid is the weakest?
$\mathcal{H C N}$ fas the smallest \mathcal{K}_{a}, so it is the weakest acid
b. Write the acid dissociation equilibrium reaction for the acid you identified in part a.
$\mathcal{H C N}^{\mathrm{N}}(\mathrm{aq})+\mathscr{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrows \mathrm{CN}\left(\mathrm{N}(\mathrm{q})+\mathscr{H}_{3} \mathrm{O}^{+}(a q)\right.$
c. Which of the conjugate bases for these acids is the weakest?

The conjugate base of the strongest acid will be the weakest: $\mathrm{CH}_{2} \mathrm{ClCOOH}$ is the strongest acid, so $\mathrm{CH}_{2} \mathrm{ClCOO}^{\circ}$ is the weakest conjugate base
d. Calculate the value of K_{b} for the base you identified in part c .

For a conjugate acid/6ase pair: $\mathcal{K}_{a} \mathcal{K}_{6}=\mathcal{K}_{w}$

$$
\begin{aligned}
\text { So: } \quad \mathcal{K}_{6}=\mathcal{K}_{w} / \mathcal{K}_{a} & =1.0 \times 10^{-14} / 1.4 \times 10^{-3} \\
& =7.14 \times 10^{-12} \\
& =\frac{7.1 \times 10^{-12}}{}
\end{aligned}
$$

e. Write the base dissociation $\left(K_{b}\right)$ equilibrium reaction for the base you identified in part c.

$$
\mathrm{CH}_{2} \mathrm{ClCOO}^{-}(a q)+\mathcal{H}_{2} \mathrm{O} \quad(l) \leftrightarrows \mathrm{CH}_{2} \mathrm{ClCOOH}^{(a q)}+\mathrm{OH}^{-}(a q)
$$

Extra Credit! -- 10 pts

The triple bond in the N_{2} molecule is very strong, but at high enough temperatures even it breaks down. At 5000 K , when the total pressure exerted by a sample of nitrogen is $1.00 \mathrm{~atm}, \mathrm{~N}_{2}(\mathrm{~g})$ is 0.65% dissociated at equilibrium:

$$
\mathrm{N}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{~N}(\mathrm{~g})
$$

At 6000 K , with the same total pressure, the proportion of $\mathrm{N}_{2}(\mathrm{~g})$ dissociated at equilibrium rises to 11.6%. Calculate the $\Delta \mathrm{H}$ of this reaction.

$$
\begin{aligned}
& \text { We need } \mathcal{K} \text { at } 5000 \mathcal{K}\left(\mathcal{T}_{1}\right) \text { and at } 6000 \mathcal{K}\left(\mathcal{T}_{2}\right) \text { : } \\
& \begin{array}{cccc}
\mathcal{A} t 5000 \mathcal{K}: & & \mathcal{N}_{2} \leftrightarrows & 2 \mathcal{N} \\
& I & 1.00 & - \\
& \mathcal{C} & -0.0065 & +2(0.0065) \\
& \mathcal{E} & 0.9935 & 0.0130
\end{array} \\
& \text { So: } \mathcal{K}_{1}=\frac{\left(\mathcal{P}_{\mathcal{N}}\right)^{2}}{\mathcal{P}_{\mathcal{N}_{2}}}=\frac{(0.0130)^{2}}{0.9935}=1.70 \times 10^{-4} \\
& \begin{array}{llll}
\mathcal{A t} 6000 \text { K: } & \mathcal{N}_{2} & \leftrightarrows & 2 \mathcal{N} \\
& & 1.00 &
\end{array} \\
& \text { C }-0.116+2(0.116) \\
& \text { E } 0.884 \quad 0.232 \\
& \text { So: } \mathcal{K}_{2}=\frac{\left(\mathcal{P}_{\mathcal{N}}\right)^{2}}{\mathcal{P}_{\mathcal{N} 2}}=\frac{(0.232)^{2}}{0.884}=6.09 \times 10^{-2}
\end{aligned}
$$

\mathcal{N} ow, plug into Van't $\mathcal{H o f f}$ equation and solve for $\Delta \mathcal{H}$:
$\operatorname{Ln}\left(\mathcal{K}_{2} / \mathcal{K}_{1}\right)=-\left(\boldsymbol{\Delta} \mathcal{H}^{0} / \mathcal{R}\right)\left[\left(1 / \mathcal{T}_{2}\right)-\left(1 / \mathcal{T}_{1}\right)\right]$
$5.8812=-\Delta \mathcal{H}^{0}\left(-4.0091 \times 10^{-6}\right)$
$\Delta \mathcal{H}^{0}=1.467 \times 10^{6} \mathrm{~g} \rightarrow 1.5 \times 10^{3} \mathrm{~kJ}$

