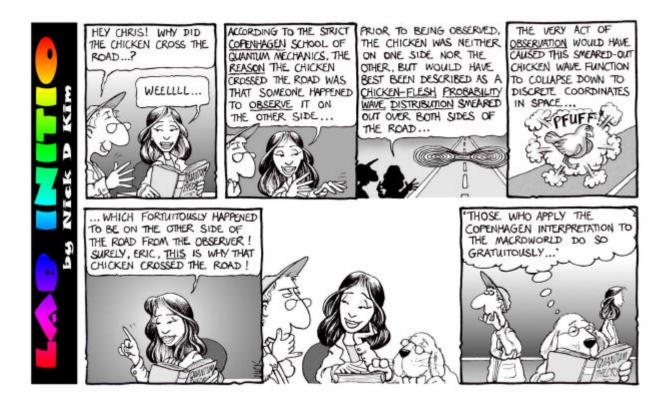
CHEM 36 General Chemistry EXAM #2


March 13, 2002

Name:

INSTRUCTIONS: Read through the entire exam before you begin. Answer all of the questions. For questions involving calculations, show **all** of your work -- **HOW** you arrived at a particular answer is **MORE** important than the answer itself! Circle your final answer to numerical questions.

The entire exam is worth a total of 150 points. Attached are a periodic table and a formula sheet jam-packed with useful stuff. Good Luck!

Page	Possible Points	Points Earned
2	25	
3	40	
4	25	
5	45	
6	25	
TOTAL:	150	

1. For the dissociation of acetic acid in water:

 CH_3COOH (aq) \leftrightarrows H^+ (aq) + CH_3COO^- (aq)

at 25.0°C, $K_a = 1.76 \times 10^{-5}$.

a. **[10 pts]** Calculate ΔG° (kJ/mol) for this reaction.

b. **[5 pts]** At equilibrium, what is the value of ΔG ?

2. **[10 pts]** Calculate the *molarity* of an aqueous acetic acid solution that is 36.0% acetic acid (by mass). The density of the solution is 1.045 g/mL and the molecular weight of acetic acid is 60.05 g/mol.

3. **[15 pts]** Given equilibrium constants for reactions 1 and 2, compute K₃:

(1) $H_2O(I) + H_2O(I) \iff H_3O^+(aq) + OH^-(aq)$ $K_1 = 1.0 \times 10^{-14}$

(2) NH_4^+ (aq) + H_2O (I) $\Rightarrow NH_3$ (aq) + H_3O^+ (aq) $K_2 = 5.7 \times 10^{-10}$

(3) NH_3 (aq) + H_2O (I) $\Rightarrow NH_4^+$ (aq) + OH^- (aq) $K_3 = ???$

4. Chloroacetic acid dissociates in aqueous solution to produce the chloroacetate and hydronium ions:

 $CH_2CICOOH$ (aq) + H_2O (I) \leftrightarrows CH_2CICOO^- (aq) + H_3O^+ (aq)

a. **[10 pts]** Compute K at 25.0 °C. given the following set of equilibrium concentrations:

 $[CH_2CICOOH] = 0.0888 M$ $[CH_2CICOO^-] = 0.0112 M$ $[H_3O^+] = 0.0112 M$

b. **[5 pts]** Calculate the pH of this solution.

5. Consider the following endothermic ($\Delta H^{\circ} = 41.18 \text{ kJ/mol}$) reaction:

$$CO_2 (g) + H_2(g) \leftrightarrows CO (g) + H_2O (I)$$

At 25.0 °C, K = 3.2×10^{-4} .

If we start with 1.0 atm of each of the gas phase species in a closed vessel containing some water:

a. **[10 pts]** Is the system at equilibrium? If not, will the reaction proceed to the *left* or to the *right* in order to reach equilibrium?

LeftRightNo Change(circle one)

b. **[15 pts]** Calculate the partial pressure of H_2 (g) for the system at equilibrium.

- c. **[5 pts each]** How will the equilibrium partial pressure of H_2 (g) be affected by the following:
 - i. CO_2 (g) is added to the system (at constant volume).

Incre	ease	Decrease	No Change	(circle one)		
ii. The volume of the reaction vessel is halved.						
Incre	ease	Decrease	No Change	(circle one)		
iii. Argon gas is added to the system (at constant volume).						
Incre	ease	Decrease	No Change	(circle one)		
iv. The temperature of the system is increased.						
Incre	ease	Decrease	No Change	(circle one)		

6a. **[10 pts]** Arrange the following acids in order of increasing strength (briefly explain your reasoning):

CH₃CH₂OH, HCIO₄, CH₃COOH, H₂O

b. **[10 pts]** Identify the corresponding conjugate bases for these acids:

AcidConjugate Base CH_3CH_2OH HCIO4 $HCIO_4$ H3O+

c. **[5 pts]** Arrange the conjugate bases in order of increasing strength.

7. **[5 pts each]** Given the K_a values for the following acids:

CH ₂ CICOOH (Chloroacetic Acid):	$K_a = 1.4 \times 10^{-3}$
C ₆ H ₅ COOH (Benzoic Acid)	$K_a = 6.5 \times 10^{-5}$
HCN (Hydrocyanic Acid)	$K_a = 6.2 \times 10^{-10}$

- a. Which acid is the weakest?
- b. Write the acid dissociation equilibrium reaction for the acid you identified in part a.

- c. Which of the conjugate bases for these acids is the weakest?
- d. Calculate the value of $K_{\rm b}$ for the base you identified in part c.

e. Write the base dissociation ($K_{\mbox{\tiny b}}$) equilibrium reaction for the base you identified in part c.

Extra Credit! -- 10 pts

The triple bond in the N₂ molecule is very strong, but at high enough temperatures even it breaks down. At 5000 K, when the total pressure exerted by a sample of nitrogen is 1.00 atm, N₂ (g) is 0.65% dissociated at equilibrium:

$$N_2$$
 (g) \leftrightarrows 2 N (g)

At 6000 K, with the same total pressure, the proportion of N_2 (g) dissociated at equilibrium rises to 11.6%. Calculate the ΔH of this reaction.