Announcements

REMI NDER:

No Class on Monday (Labor Day) ®

■ *Office Hours:* Tues 2:15 - 3:15

Thur 10:00 - 11:00 Fri 11:00 - 12:00

■ Problem Session: Email VOTE!

- Mon 3:20 4:20
- Tues 4:15 5:15
- Wed 4:30 5:30

More History

- Lavoisier
 - -18th Century Frenchman
 - -Wrote the 1st Chemistry text
 - -Considered the "Father of Chemistry"

Rigorously quantified masses **before and after** a chemical reaction (in a closed system):

Law of Conservation of Mass

2

Still more History

■ Proust

-also an 18th Century Frenchman

Found that: regardless of how prepared, a compound will always have the same composition (same elements present in the same proportion)

Law of Definite Proportions

BUT: still didn't know WHY these laws were followed

3

along comes: John Dalton

- 19th Century British Schoolteacher
- <u>He found</u>: elements can combine to form *different* compounds when they combine in *different proportions*:

Law of Multiple Proportions

■ Based on these laws, he proposed an:

Atomic Theory of Matter

Dalton's Atomic Theory (1808)

- Matter is composed of <u>Atoms</u>
- Atoms are indivisible particles
- All atoms of an element are identical
- Different elements -> Different atoms
- Atoms retain their identities in chemical reactions
- Compounds are formed by combining atoms of different elements in simple wholenumber ratios

Quantitative Measurements

- "If you can't measure it, you can't really understand it."
- Measured quantities have *two parts*:
 - 1) *number*
 - 2) unit

Example: 2.367 quarts

6

Units

- SI Units (Système International) are the commonly used units for scientific measurements
- Base SI Units:

Length: meter, m

Mass: kilogram, kg

Base SI Units

Physical Quantity	Name of Unit	Abbreviation
Mass	Kilogram	kg
Length	Meter	Of
Time	Second	82
Electric current	Ampere	A
Temperature	Kelvin	K
Luminous intensity	Candela	cd
Amount of substance	Mole	mol

Prefix Es Frefix Abbreviation Meaning Example Giga- G Mega- M 106 1 giganseter [Gm] = 1 × 10⁶ m 1 magameter [Mm] = 1 × 10⁶ m 1 magameter [Mm] = 1 × 10⁶ m 1 kiloneter [km] = 0.1 m 1 certaineter [km] = 0.1 m 1 certaineter [km] = 0.01 m 1 certaineter [km] = 0.01 m 1 certaineter [km] = 0.001 m 1 millioneter [km] = 1 × 10⁻⁸ m 1 millioneter [km] = 1

More Units

■ Derived SI Units:

Volume: m³

-more commonly: cm³ (cc or mL) -even more commonly: Liter, L

(NOT an SI unit!)

Density: g/cm3

-originally used to define mass (1 gram = mass of water in 1 cm³)

10

Energy Units

Not quite so obvious: $kg-m^2-s^{-2}$

-<u>Gravitational Potential Energy</u> =

 $mass \ x \ acceleration \ x \ length \ =$

kg x m/s² x m = \underline{Joules}

-Kinetic Energy = mass x (velocity)2

= $kg \times m^2/s^2 =$ **Joules**

11

Dimensional Analysis

Use conversion factors to change units:

1 inch = 2.54 cm 12 inches = 1 foot 1 m = 1000 mm

 $1 \text{ Å} = 10^{-10} \text{ m}$

Dimensional Analysis Example

-How many cm are there in 1.7 miles?

We know: 2.54 cm = 1 inch 12 inches = 1 foot 1 mile = 5280 feet

miles -> feet -> inches -> cm

1.7 miles \times 5280 feet \times 12 inches \times 2.54 cm = 273,588.48 cm 1 mile 1 foot 1 inch

13

Significant Figures (digits)

■ There is *measurement uncertainty* associated with **every** measured quantity:

1.7 miles – uncertainty is in last digit

273,588.48 cm - where is the uncertainty?

14

Sig Figs: Rules

- Measurement uncertainty expressed in last digit
- In <u>addition and subtraction</u>: uncertainty in result is limited by value with the greatest **absolute** <u>uncertainty</u>
- In <u>multiplication and division</u>: uncertainty in result is limited by value with the greatest relative uncertainty

15

Rounding and Zeros

Rounding

If <5, round down

If >5, round up

If =5, round to nearest EVEN number

-Only round at the END of a calculation!

Zeros

All zeros are significant **EXCEPT** those that **only** locate a decimal point

Example: Final Rounded Answer

1.7 miles $_{\times} \frac{5280 \text{ feet}}{1 \text{ mile}} \times \frac{12 \text{ inches}}{1 \text{ foot}} \times \frac{2.54 \text{ cm}}{1 \text{ inch}} = \textbf{273,588.48 cm}$

-limited to TWO sig figs in result

■ 273,588.48 cm rounds to: 270,000 cm or 2.7 x 10⁵ cm (best!)