Announcements

$\mathcal{R E M I} \mathcal{N} \mathcal{D E R}:$
\mathcal{N} Class on Monday (Labor Day) $:($

- Office Hours: Tues 2:15-3:15

Tfiur 10:00-11:00
Fri 11:00-12:00

- Problem Session: Email VOTE!
- Mon 3:20-4:20
- Tues 4:15-5:15
- Wed 4:30-5:30

More \mathcal{H} istory

- Lavoisier
- $18^{\text {th }}$ Century Frencfiman
- Wrote the $1^{\text {st }}$ Chemistry text
- Considered the "Father of Chemistry"

Rigorously quantified masses before and after a chemical reaction (in a closed system):

Law of Conservation of $\mathcal{M a s s}$

- Proust
-also an $18^{\text {th }}$ Century Frencfoman
Found that: regardless of how prepared, a compound will always fave the same composition (same elements present in the same proportion)

Law of $\mathcal{D e}$ finite $\operatorname{Proportions~}$
BUI: still didn't know WH
along comes: I ofin $\mathcal{D a l t o n}$

- $19^{\text {th }}$ Century British Schoolteacher
- He found: elements can combine to form different compounds when they combine in different proportions:

Law of Multiple Proportions

- Based on these laws, he proposed an:

Atomic Theory of $\mathcal{M a t t e r}$

Dalton's Atomic Theory (1808)

- Matter is composed of Atoms
- Atoms are indivisible particles
- All atoms of anelement are identical
- Different elements -> Different atoms
- Atoms retain their identities in chemical reactions
- Compounds are formed by combining atoms of different elements in simple whole. number ratios

Quantitative Measurements
"If you can't measure it, you can't really unders tand it."

- Measured quantities have two parts:

1) number
2) unit

Example: 2.367 quarts

Base SI Ulnits

TABLE 1.4 SI Baie Units		
Physical Quantity	Name of Unit	Abbreviation
Mass	Klogram	kg
Lengt	Meter	(1)
Time	Second	s^{2}
Electriccument	Ampere	A
Temperature	Kelvis	K
Luminous intessity	Candela	cd
Amwunt of substance	Moks	nol
${ }^{4}$ The dituration me is fropmity wied		

Ene rgy Units

Dimensional Analys is
Not quite so obvious: $\mathrm{kg} \cdot \mathrm{m}^{2}-\mathrm{s}^{-2}$

- Ule conversion factors to change units: - Gravitational Potential Energu $=$
mass χ acceleration χ length $=$

$$
\mathrm{kg} \quad \chi \quad \mathrm{~m} / \mathrm{s}^{2} \quad \chi \quad m=\underline{\text { goules }}
$$

Kine tic Energy $=$ mass $x(\text { ve (ocity })^{2}$

$$
=\mathrm{kg} \mathrm{x} \mathrm{~m}^{2} / \mathrm{s}^{2}=\underline{\text { goules }}
$$

1 inch $=2.54 \mathrm{~cm}$
12 inches $=1$ foot
$1 \mathrm{~m}=1000 \mathrm{~mm}$
$1 \mathscr{A}=10^{-10} \mathrm{~m}$

- How many cm are there in 1.7 miles?

We know: $2.54 \mathrm{~cm}=1$ inch
12 incties $=1$ foot
1 mile $=5280$ feet
miles ->feet ->inches ->cm
$1.7 \overline{\text { miles }} \times \frac{5280 \text { feet }}{1 \text { mile }} \times \frac{12 \overline{\text { inches }}}{1 \text { foot }} \times \frac{2.54 \mathrm{~cm}}{1 \mathrm{inch}}=273,588.48 \mathrm{~cm}$

Significant Figures (digits)
■ There is measurement uncertainty associated with everymeasured quantity:
1.7 mile s-uncertainty is in last digit
$273,588.48 \mathrm{~cm}$ - where is the uncertainty?

Rounding and Zeros

Rounding

If <5, round down
If >5, round up
If $=5$, round to nearest $\mathcal{E V E \mathcal { N }}$ number

- Only round at the $\mathcal{E N} \mathcal{D}$ of a calculation!

Zeros
$\mathcal{A l l} z e r o s$ are significant EXCEPT those that only
locate a decimal point

Example: Final Rounded Ans wer
1.7 miles $\times \frac{5280 \text { feet }}{1 \text { mile }} \times \frac{12 \text { inches }}{1 \text { foot }} \times \frac{2.54 \mathrm{~cm}}{1 \text { inch }}=273,588.48 \mathrm{~cm}$ - Cimited to \mathcal{T} WO sig figs in result - $273,588.48 \mathrm{~cm}$ rounds to: $270,000 \mathrm{~cm}$ or $\frac{2.7 \times 10^{5} \mathrm{~cm}}{}$ (6est!)

