
Chapter 5

Quantum Theory of the Hydrogen Atom

The hydrogen atom, a problem we can solve exactly, is the theoretical seedfrom  which
our picture of molecules and complex atoms will soon sprout. The exercises in this
chapter offer a thorough workout in the basics of quantum numbers, orbital patterns, and
one-electron energies.

Pressing the analogyfirst  made in Chapter 4, the set opens with a review of standing
waves. See pages 130-133, R4.4, and 148-149 of PoC.

1. Only one quantum number is needed to describe a standing wave in one dimension. A
positive integer (n = 1,2, . . . , co), this single value specifies the number of half-wavelengths
confined between the two endpoints. There are n - 1 nodes present in a particular mode of
vibration.

2. Since an integral number of half-wavelengths must fit into the interval L,

h
ny=L (n = 1,2,  . . . , a)

we have the following restriction on the wavelength h:

&?L (n=1,2,...,cO)
n

When L = 0.72 m, as specified, the first five modes range in wavelength from 1.44 m
(lowest frequency, n = 1) to 0.288 m (highest frequency, n = 5):
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n A,= 2L NODES  (n - 1)
n

1 1.44 0
2 0.72 1
3 0.48 2
4 0.36 3
5 0.288 4

For a drawing of these first five standing waves, see Figure 5-l on page 149 of PoC  (and
substitute the values L = 0.72 m and h,, = 1.44/n).

3. Standing waves in one dimension are characterized by a single quantum number:

n= 1,2,3, . . . . 00

Each pattern of vibration contains n half-wavelengths and n - 1 nodes.

(a) In principle, a string can support an infinite number of harmonics: n ranges from 1 to co.

(b) See Figure 5-l on page 149 of PoC  and take note: One additional half-cycle of
oscillation is fitted into the same space for each increment of n by one unit. The second
harmonic, for example, varies in space twice as fast as the first harmonic. The third
harmonic varies three times as fast as the first. The fourth, four times. And so on:

n FREQUENCY

1 V

2 2v
3 3v
4 4v

n n v

The spatial frequency of the nth harmonic is nv.

4. A standing wave develops when two waves traveling in opposite directions--one
disturbance moving at velocity u and the other at velocity -U  -interfere constructively to
produce a stationary pattern. Confined along a distance L are n half-wavelengths,

h
n--L

2

with the wavelength of each mode directly proportional to L:
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The corresponding modal frequency

24
v, =n-

2L

is thus inversely proportional to the wavelength:

hnv,  = u

Each frequency, moreover, is a multiple of some fundamental frequency v, which itself is
inversely proportional to the string length:

vzv, 2
2L

(n = 1)

(a) We have just established that the fundamental frequency is inversely proportional to
the length of the string:

A longer string will vibrate at a lower fundamental frequency. Its fundamental
wavelength (2L) will be longer.

(b) If a loo-cm  string has a fundamental frequency of 440 Hz, then a 50-cm  string (half
the length) will vibrate at 880 Hz-twice as fast.

(c) By the same reasoning, a string of double the length (200 cm) will vibrate at half the
fundamental frequency, or 220 Hz.

5. Write the frequency of the nth harmonic as

and calculate the fractional change between v, + 1 and v,,:

Vn+l -V, = (n+l)v-nv =’

V” nv n

Then, to obtain the percentage change, multiply by 100%;

L x 100%
n
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A sample calculation for, say, n = 4 yields the value 25%:

5v-4v

4v
x 100% = f x 100% = 25%

The full set is displayed below:

n 1 x 100%
n

(4 4 25
0-Q 5 2 0
(4 7 1 4
w 100 1
(e) 1 ,ooo,ooo 0.000 1

At high frequencies, the change from one standing wave to the next is relatively small.
See Figure 5.1 for a visual comparison.

n=2 n=3

9 9
4 b 4 b

L L

n = 50 n = 51

uuuuuuuuuuuuuuuuuuuuuuuuu  uuuuuuuuuuuuuuuuuuuuuuuuu

4 b 4 b

L L

FIGURE 5.1 Standing waves. Top: Successive modes are easily distinguished at low quantum
numbers, where relatively few half-wavelengths span the interval. The difference between n = 2 and
n = 3, for example, is clear. Wavelength decreases from L  to $L,  and frequency increases accordingly.
Crests and troughs are well separated. Bottom: Going from one arbitrarily high mode (n = 50)  to the
next (n = 5 I),  the crests and troughs lie close together and the incremental changes in frequency and
wavelength are less pronounced. For the sake of clarity, the high-frequency oscillations are sampled
twice per cycle and represented here as square waves.
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From standing waves on a string to the quantized solutions of Schriidinger k equation.
Relevant material is found in Sections 4-5,  4-6, 5-2, and 5-3 of PoC.

6. Presumably the proportional spacing between atomic energy levels should decrease as
the principal quantum number increases. At sufficiently high values, too, we expect the
levels to blend together into a continuum- a regime where the energies are spaced so
closely as to appear unquantized.

In a hydrogen atom, for example, orbital energies are proportional to n-*  and thus
become quasi-continuous at quantum numbers lower than those for string vibrations.

7. Quantum numbers of the one-electron atom are discussed on pages 148-152 and
R5.2-R5.3  of PoC.

(a) Three quantum numbers correspond to the three spatial dimensions of a one-electron
atom: a radial quantum number (n) and two angular quantum numbers (e  and me).

(b) The principal quantum number, n, fixes the energy and radius of an electronic orbital.
The angular momentum (or azimuthal) quantum number, !, determines the shape of the
orbital and fixes the magnitude of the electronic angular momentum. The magnetic
quantum number, me,  establishes the orientation of the orbital and fixes its direction in a
magnetic field.

(c) The principal quantum number n of a one-electron orbital is most like the single
quantum number n used to describe a standing wave. The total number of nodes in both
systems is equal to n - 1.

8. According to the uncertainty principle (Section 4-6),  exact knowledge of an electron’s
position (AX = 0) precludes any definite knowledge of its momentum (Ap = 00):

Aphx>=h

If we know precisely where the electron is at some instant, then we have no idea where it
is going or when it will get there.

9. A one-electron orbital (VI) is a solution to the Schriidinger equation for a single
electron moving in the Coulomb potential of a single nucleus. It represents one of the
allowed quantum states, carrying with it a certain energy and angular momentum.

Evaluated at some point in space (x, y, z), the wave function ~(x,  y, z) provides a
probability amplitude for finding the electron at that particular location. Its square,
w*(x,  y, z), is proportional to the probability itself, just as the intensity of an ordinary
wave is proportional to its own particular amplitude. The wave function w, also like a
wave, combines with other such functions and undergoes interference.
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Quantum numbers and orbitals. See pages 148-l 52 and R5.2-R.5.3  of PoC,  together
with Examples 5-I  through 5-4.

10. The general designation is n!,  where P is assigned the code letters s (for ! = O),p (for
I! = l), d (for e = 2),  f (for k’  = 3),  g (for e = 4),  and so forth.

SUBSHELL n !

(a) 3~ 3
(b) 2 s 2 i
(9 4 P 4 1
(4 1s 0
(e) 2p i 1

11. More of the same:

SUB~HELL n l

(a) 3d 3 2
(b) 4d 4 2
(c) 3 s 3 0
(d) 4s 4 0
(e) 4f 4 3

12. Similar to the two preceding exercises. Azimuthal quantum numbers f? = 0, 1,2,3,
4, 5 . . . correspond to the letters s,p, d,f, g, h . . . .

n e

(4 3 2
(b) 2
(c) 4 :
(d) 1 0

13. Same idea:

n e

(9 2 0
00 6 5

Cc) 3(d) 3 i

SUBSHELL

3d

2 P
4f
1s

SUBSHELL

2 s
6 h

3 P
3 s
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14. For a given value of n, the quantum number ! ranges from 0 to n - 1:

1 2 5

e=O,1,2  ,...,  n - l

Each shell n therefore supports n subshells:

n e LETTERCODE

1 0 s
2 0, 1 S,P
3 0, L2 s,p,  d
4 0,1,2,3 S,P,  4f
5 0, 1,2,3,4 s, P, d,.fY  g

See pages 152-l 53 (and particularly Figure 5-3) of PoC.

15. For a given value of e,  the quantum number me ranges from -e  to +-!  in steps of 1:

m,=0,+1,+2  ,...,  9

Each subshell  supports 2e  + 1 magnetic sublevels:

SUBSHELL

(a)
(b) ::

(4 2P
09 3s
@) 3P

16. Similar:

SUBSHELL

(a)  3d

00(cl z
w 4d
63 4f

n

n

e me

0
0

-1 0 1
0

-1 0 1

me
-2 -1 0 1 2

0
-1 0 1

-2 -1 0 1 2
-3 -2 -1 0 1 2 3
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17.  The subshells are distributed as follows:

1s
2s 2p
3s 3p  3d

Spherically symmetric, the angular wave function representing an s orbital is everywhere
positive (and constant, too). See Figure 5-9  on page 162 of PoC  for a sketch.

Thep orbitals come in groups of three (mc = -1, 0, 1) , and the corresponding
angular wave functions can be combined to produce both real and complex functions-all
equivalent in a free atom. Chemists typically represent the three p orbitals as dumbbells
along three perpendicular axes, with each dumbbell bisected by a nodal plane. See
Figure S- 11 on page 166 (in which the px  and pv  functions are linear combinations of
states having m, = +l and me = -1).

The d orbitals come five to a set. In common practice they are generally portrayed
as four cloverleaf patterns and one “dumbbell in a doughnut,” with nodal planes and
phases as shown in Figure 5-12 of PoC  (page 167).

18. Here we take a closer look at the three magnetic sublevels of the 3p  subshell  (me =
- 1, 0,l). Our conclusions pertain equally well, however, to any other set ofp orbitals in
a one-electron atom (where n = 2,3,  . . ., 00)  and indeed to any subshell  4 within any shell
n (where m, = 0, +l, +2,  . . . . @.

(a) In the absence of a magnetic field, the states me = -1, me = 0, and me = 1 all have the
same energy. Thep subshell  is threefold degenerate in the free atom.

Further, in a one-electron atom this single value of energy is equal to that of the 3s
and 3d subshells. Energy depends only on n, not e or me (PoC,  page 155).

(b) The electron, a charged particle, generates angular momentum and thus its own
magnetic field while moving about the nucleus. Imposition of an external magnetic field
then destroys the equivalence of the 3px,  3p,, and 3p,  orbitals. The self-generated field of
an electron interacts with the external field, leading to a different energy for each of the
three quantized orientations (me  = -1, 0, 1). The degeneracy of the p subshell  is broken,
and the 3s orbital lies lower in energy than the 3p.

(c) An orbital splits further into two spin states, which develop from an intrinsic
electronic angular momentum-and associated magnetic field-unrelated to any overt
bodily rotation. Interacting with an external magnetic field, the spin-endowed electron
has an “up” state (m, = 4) and a “down” state (m, = -4).  Each produces a different energy.

There are, in all, six distinct 3p  energies in a magnetic field:

space (3) x spin (2) = 6 states
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19. Electron spin. See pages 173-176, R5.4-R5.5,  and A171 of PoC.

(a) The electron is thought to be a point particle lacking any discernible structure and
therefore unable to spin like a top. Quantum mechanical “spin” produces an anomalous
magnetic moment inconsistent with a classical rotation.

(b) The quantum number m, measures the component of spin angular momentum along
an axis established by an external magnetic field.

(c) Electron spin arises from an angular momentum inherent in the particle itself, not
attributable to any obvious rotational motion. The fourth quantum number appears
naturally in Dirac’s relativistic theory of the one-electron atom.

(d) Spin angular momentum is described by two quantum numbers--s and m,-just  as
orbital angular momentum is described by the two analogous quantum numbers e and me.
The same rules apply: (1) The magnitude of an orbital angular momentum (in units of
h/2x)  is ,/m. The magnitude of a spin angular momentum is ss(s+l). (2) The
component of orbital angular momentum along an external field measures me in units of
h/2x Similarly, the corresponding component of spin angular momentum is m,. (3) The
allowed values of me run from -e to +!  in steps of 1. The allowed values of m, run from
-s to +s,  also in steps of 1.

For electrons, where s is always equal to 4, the component m, is restricted
accordingly to the two values -4 and +$.

20. ThequantumnumberI(=O,  1,2 . . . . n- 1) must be a positive integer less than n:

SUBSHELL  n .e C OMMENT

(a)  ld 2 forbidden (1>  n)
(b) 5d : 2 allowed
(c)  5f 5 3 allowed
(d) 5h 5 5 forbidden (! = n)
(e) 6h 6 5 allowed
(0 8d  8 2 allowed

21. See Exercises 10 through 13. Subshells are defined by n and e alone, not me:

n I SUBSHELL

(a) 3 2 3d
09  2 1 2~
(c) 4 3 4f
(d) 1 0 Is



128 Complete Solutions

22. Similar:

n t SUBSHELL

(a) 2 0 2s
(b) 6 5 6h
(4 3 1
(4 3 0

$

23. The rules are as follows:

n=l,2,3  ,..., oo

L=O,1,2  ,..., n-l

m,=0,+1,+2  ,..., +L

m, =++

Violations are cited in the table below:

n e

(a) 4 2

09 2 1

Cc) 5 5

(a 1 0

24. Similar:

n e

(a) 3 2
(b) 6 -1

w 3 0
00 3 4

me
1

2

-2

-1

me

2

5

1

0

ms

1

ii

4
- -:

C OMMENT

forbidden (m,  z ki)

forbidden ( I me I > e)

forbidden (1 = n)

forbidden ( I me I > e)

C OMMENT

forbidden (m, # k$)

forbidden (f!  < 0; mS f z!$

forbidden ( I me I > e)

forbidden(!+O, 1,2,  . . ..n-  1)

25. The total number of nodes is n - 1, and the number of angular nodes is P:

RADIAL -t-  ANGULAR = TOTAL

n - e - 1 e n- 1

See Examples 5-3 and 5-4 in PoC.  Nodal patterns for the fourth shell are as follows:
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SUBSHELL  n e RADIALNODES  +  ANGULARNODES  =  TO T A L

4s 4 0 3 0 3

4 P 4 1 2 1 3
4 d 4 2 1 2 3

4f 4 3 0 3 3

26. The radius of an orbital increases as n increases, enhancing the probability that the
electron will be found farther from the nucleus. A hydrogen atom therefore expands
when the electron moves out of the ground state (n = 1). Its radial wave function persists
over a greater distance from the nucleus.

Energy calculations. See pages 153-I 56 and Examples 5-5 through 5-7.

27. The orbital energies of a one-electron atom are quantized according to the formula
introduced on pages 153-l 56 of PoC:

Z2
E, = -R,  -

n2

Here the symbol n denotes the principal quantum number, and the symbol Z denotes the
atomic number (the positive nuclear charge). The Rydberg constant, R,, corresponds to
the ionization energy of a hydrogen atom: the difference in energy between the levels
n= 1 andn=cowhenZ=  1.

For an arbitrary transition from an initial level ni to a final level nf, the difference
in energy is thus

for any one-electron atom with atomic number Z. See Example 5-7 in PoC  (page R5.9).
Note, in passing, that the full value of the Rydberg constant is given as

R,= 2.1798741 x lo-”  J

in Table C-5 of PoC  (page A65). Like most of the physical constants, it is a number
known to very high precision. Our customary practice, however, will be to use only three
or four digits for L-except in cases, as in this exercise, where round-off error proves to
be an issue.

(a) Substitute the values ni = 1, nf = 2, and Z = 1 to obtain AE between the ground state
and first excited orbital of a hydrogen atom:
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1
AE= -R,Z2  -2( 1nf2  nf

= -R,(l)2  X
( )+-+

X0 3(2.1798741  x lo-‘*  J)
z-z = 1.6349056 x 10-l’  J

4 4

Rounded to three digits, the energy ($Roo)  is 1.63 x lo-‘*  J.

(b) To compute the wavelength associated with a photon having E = $Rm, rearrange the
Planck-Einstein formula

to isolate h:

4hc 4(6.6260755  x 1O-34 J sx2.99792458  x lo*  m s-l)
z-z

3L 3(2.1798741  x lo-‘*  J)

= 1.2150227 x 10q7 m = 122 nm

Visible light, which falls roughly in the range 400-700 nm (equivalently, 4000-7000 A),
is therefore insufficiently  energetic to bring about the transition. The requisite energy
must be provided by ultraviolet light-radiation with a shorter wavelength.

For additional examples of this kind of calculation, see Exercises 14 through 24 in
Chapter 4. Related material is found in Section 4-4 and Example 4-5.

(c) Use the equation

1
E, =ymv2

to calculate the kinetic energy of a helium atom. If the mass m is in kilograms and the
velocity v is in meters per second, then the energy Ek appears in joules (equivalent to
kg m2  ss2):

I
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4.0026 g 1 kg 1 mol
m= x - x 1 023 = 6.647 x 1 OS*’

mol
1000 6.022 atoms kg (per atom)

g
x

v=lOOOms-

6.647 x 1 OS*’  kg)( 1000 m s-’  )’  = 3.323 x 1 O-*’  J

This energy is also less- by a factor of 500-than  the difference between the first and
second shells of hydrogen. A helium atom moving at 1000 m s-’  does not have enough
energy to excite a hydrogen atom in the ground state.

For assorted calculations involving kinetic energy, see Exercises 15, 16, 17,20,
21, and 24 in Chapter 1, as well as Exercises 23,25,28,29,33,34,  and 35 in Chapter 4.
The subject is covered on pages 30-3 1,39-40,  and R1.4-R1.5  of PoC,  along with
Examples l-l, 1-2, l-6,4-5, and 5-6.

28. Refer back to Exercise 27 for a brief review of energy quantization in a one-electron
atom:

z*
E, =-R,--

n*

We calculate AE4 + 5 for H and then compare it with the equivalent value for He+.

Hydrogen (2  = 1, ni = 4, nf  =  5):

AE=

=-R,(l)* x +--$( )

= O.O225R, = 4.90 x lo-*’  J

Helium ion (Z = 2, ni = 4, nf  =  5):

= -R,(2)*  x

= 4 x O.O225R,  = 1.96 x 10-l’  J
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The.levels  in He+ are more widely spaced, by a factor of 4:

v = 6.169 x 1014  s-’

we calculate the corresponding photon energy:

E = hv = (6.626 x 1O-34  J $6.169 x lOI  s-‘) = 4.088 x 10-l’  J

We then insert this value into the energy equation for hydrogen (implicitly, 2 = l),

and thereby establish a relationship between ni and n,:

4 088 x 10-l’  J
2.;799  x lo-‘*  J = o*1875

Trial and error yields two solutions, one for absorption (nf > ni)  and one for emission
(nf  <  4.

Absorption (ni  = 2, nf = 4)

I-$-$/=I&-$/=I-0.18751=0.1875
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Emission (ni = 4, nf = 2)

= 10.18751=  0.1875

QUESTION: A correct result, but how do we arrive at it?

ANSWER: We need take only two false steps. (1) Absorption or emission between
the first and second shells (1 2 2) yields a magnitude 0.7500 for the difference in
l/n*:  larger than 0.1875, and hence too energetic. Moreover, any other transition
involving n = 1 will produce an even larger number. We must go on to the next shell,
n = 2. (2) The transition 2 2 3 yields an absolute value of 0.1389: too small, but a step
in the right direction. Our very next choice (2 2 4) yields 0.1875: just right.

30. The energy of any orbital in a one-electron atom depends only on the quantum
number n, not P or mp.

Thus for the 1s + 2p  transition in hydrogen (Z=  l),  we simply calculate AE
between ni = 1 and nf = 2:

AE=

= -R,(l)*  x

wa 3(2.1798741  x 10-l’  J)
z-z

4 4

= 1.6349056 x lo-‘*  J

The associated wavelength follows directly from the Planck-Einstein relationship:
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hcA=-
I IAE

4hc
E-z

4(6.6260755  x lo-34  J s)(2.99792458  x lo*  m s-‘)

3Raz 3(2.1798741  x l+*  J)

=1.2150227x10-‘m=122nm

See Exercise 27 and Example 5-7 for additional details. Results (rounded to three digits)
are summarized in the table below:

TRANSITION ni nf AE &J AE  (J) h N-0 C O M M E N T

( a )  ls+2p 1 2 0.7500 1.63 x lo-‘* 1.22 x lo-’ absorption

( b )  5f+ 4d 5 4 -0.0225 -4.90 x IO-*’ 4.05 x lO+j emission

(c)3d+oo 3 co 0.1111 2.42 x lo-l9 8.20 x lo-’ absorption
w oo+  1s 00 1 -1 .oooo -2.18 x lo-‘* 9.11 x lo-* emission

Absorptive transitions occur ,when the final state, nf, lies higher than the initial
state, ni.  The atom takes up energy from the electromagnetic field, and AE (for the atom)
is positive.

Emissive transitions arise when nf < ni. Falling from a higher state to a lower
state, the atom gives up energy to the electromagnetic field. The atomic AE is negative.

Note that our convention is to state the wavelength as apositive quantity, even if
AE happens to be negative:

hcA=-
I IAE

31. For calculations involving He+, we use 2 = 2 in the one-electron energy formula:

m = E, -Ei =-R,Z2
Compared with hydrogen (Z = I), the energy of each transition is therefore four times the
value calculated in the preceding exercise (22  = 4):
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He+: AE=-R,(2)2 x

The wavelengths are reduced by the same factor:

heH: =-h
I I4-I

Results are given in the following table:

TRANSITION ni nf AE w m (J)
( a )  ls+2p 1 2 3.0000 6.54 x 10-l’
(b) 5f+ 4d 5 4 -0.0900 -1.96 x 10-l’
(c)3d+co 300 0.4444 9.69 x lo--”
(4 co+ 1s co  1 -4.0000 -8.72 x lo-l8

h 6-N C O M M E N T

3.04 x 1o-8 absorption
1.01 x lo+ emission
2.05 x lo-’ absorption
2.28 x 1O-8 emission

32. Similar to Examples 4-5 and 5-6. First, calculate the ionization energy of hydrogen
in its ground state:

AEI+m

= R,

= 2.18 x lo-l8  J

Next, calculate the energy of an ionizing photon with a wavelength of 827 8, (equal to
8.27 x 10s8  m):

(6.626 x 1O-34  J sx2.998 x lo8 m s-‘)
=

8.27 x 10m8  m

= 2.40 x lo-l8  J
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(a) The kinetic energy of the ejected electron is the difference between the photon energy
(hv) and the ground-state ionization energy of the atom (A&  --)  ,,,):

E,  = hv- AE,+,

= (2.40 - 2.18) x lo-l8  J

= 0.22 x lo-i8  J

= 2.2 x lo-”  J (2 sig fig)

(b) Use the defining equation

E,  =;nw2

to obtain the velocity:

2(2.2 x lo-”  kg m2  sm2)  = 7 o

9.109 x 1O-3’ kg
. x

lo5  m s-,

The mass of an electron, 9.1093897 x 10”’ kg, is available in Table C-5 of PoC  (page
A65). Note that 1 J is equal to 1 kg m2  se2.

33. Assume, contrary to fact, that the electron is initially at rest-with zero velocity and
hence zero kinetic energy. We then calculate the energy it gives up while falling from
infinity (E = 0) “down” to the nth shell of a hydrogen atom:

AE m+n
=-Rm(q2  x -$---$  = -5

! )

These values, determined solely by the principal quantum number n, are independent of
the angular momentum quantum number 1.  It makes no difference whether the transition
terminates in an S,  p, or d subshell:

A E
Rm

m-+1=- -=-2.18x10-I8  J
l2 (14

AE Rm
m-b2  =---=22

-5.45 x 10-l’  J (24 2P)

AE Rm
a+3  =--T= -2.42 x lo--”  J

3
(3s,  3p, 34  ,
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Next we compute the initial kinetic energy,

=-i (9.109 x 10S3’  kg)(l.OO  x lo6  m s-‘)’ = 4.555 x lo-”  kg m2  sm2

= 4.555 x 10-l’  J

and subtract it from AE,,,  to obtain the total energy released:

(a)  To 3d: ~,?&,+3  -j&=(-2.42  -4.555)~ lo-“J=-6.98  x lo-” J

(b) To 3p: AE,+3  -&=(-2.42  - 4 . 5 5 5 ) x  10-‘gJ=-6.98 x lo-“J

(c)  To 3 s :  AE.+,3  -&=(-2.42  - 4 . 5 5 5 ) x  lo-“J=-6.98  x lo-“J

(d)  To2p:  ~Lf?,,~-&=(-5.45  - 4 . 5 5 5 ) x  IO-” J=-1.00 x lo-‘*J

(e)  To 2s:  A&,+2-&=(-5.45  - 4 . 5 5 5 ) X  10-‘gJ=-l.OO  x lo-‘*  J

(f)  To 1s: Mm..+,  -&  = (-2.18 - 0.456) x lo-‘*J  = -2.64 x lo-‘*J

See also Example 5-6.

34. Transition energies for the Li2+  ion (2  = 3),

A E
z2 9&

m+n =-R5T= n2

are nine times greater than those for the H atom:

H :  AE,,,  =-R, Li2+: AE,,,  = -9R,  = -1.96 x 10-l’  J

9
A Eco+2 A Eco+2 =  - -

4
R,  = -4.90 x 10-l’  J

AEco+3= - R  =  218x10-‘* Jco -*

The kinetic energy of the free electron, calculated in the previous exercise, is 4.555 x lo-”  J.
See the tabulation at the top of the next page:



.
138 Complete Solutions

(a) To3d: k!?a+s-&= -2.18 x lo-l8  J - 4.555 x 10-l’  J = -2.64 x lo-l8  J

(b) To 3p:  AE,,3  - & = -2.18 x lo-l8  J - 4.555 x 10-l’  J = -2.64 x lo-l8  J

(c) To3s:  AE~,3-Ek=-2.18x  lo-18J-4.555 x lo-“J=-2.64x  lo-l8  J

(d) To 2p:  AE,,2  - Ek = -4.90 x lo-l8  J - 4.555 x 10-l’  J = -5.36 x lo-l8  J

(e) To 2s: AE,,z- Ek  = -4.90 x lo-l8  J - 4.555 x 10-l’  J = -5.36 x 1O-‘8 J

(f)  T o  1s: AIL,’ - & = -1.96 x 10-l’  J - 4.555 x lo-”  J = -2.01 x 10-l’  J

35. Once again, we use the equation

M = E, -Ei =-R,J2

to determine the difference in energy between two states of a hydrogen atom (Z = l),  this
time taking nf= 3 and n’ = 4,5,6,7.  Then, with energy in hand, we go on to calculate the
wavelength of the emitted photon:

One sample calculation (n’ = 4 + nf = 3) should suff’ce.

Energy:

=- (2.18~10-‘~  J)x(~)~  x($+)  =-1.06~10-‘~  J

Wavelength:

h=&=
(6.626 x 1O-34  J s)(2.998  x lo8  m s-‘)

1.06 x 10-l’  J
= 1.87 x 10q6  m (1.87 pm)
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The transitions, all with micron wavelengths (1 pm = 10e6  m), fall into the infrared
portion of the electromagnetic spectrum:

ni &J) h (F-0

4 -1.06 x 10-l’ 1.87
5 -1.55 x lo-l9 1.28
6 -1.82 x 10-r’ 1.09
7 -1.98 x 10-l’ 1.00

36. Since all emissions in the Paschen series terminate at nf = 3, the most energetic
transition is from ni = 00  to nf = 3:

The wavelength, in turn, is inversely proportional to the energy:

For He+ (2  = 2):

4Rca
u=-T= -9.69 x 10-l’  J

h=j-y~- = 2.05 x 10m7  m (205 nm)

For H (Z= 1):

-2.42 x 10-l’  J

hc 9hc
----=8.20x10V7  m (820nm)

h-IAEl-  R,

Energies in the helium ion are four times greater than those in the hydrogen atom.



140 Complete Solutions

37. The least energetic transition in the Paschen series (Exercise 35) is from ni = 4 to
nf= 3:

m=-RaZ2[-&-$  =-R,Z2($+)

For He+ (Z = 2):

AE =-(2.18x lo-‘*  J)x(~)~ x(+-$)  =-4.24x 10-l’  J

h=& ( 6.626 x 1O-34  J sx2.998  x lo8  m s-‘)

4 24 x lo-”  J
= 4.69 x lo-’ m (469 nm)

.

ForH(Z= 1):

AE=-(2.18x10-‘*  J)x(~)~  x($--$  =-1.06x10-”  J

(6.626 x 1O-34  J sx2.998  x lo*  m s-‘)

1.06 x 10-l’  J
= 1.87 x 10m6  m (1.87 pm)

Energies in the helium ion are four times greater than those in the hydrogen atom:

(542 43’ =4

38. The most energetic transition is from ni = co  to the lowest shell in the series (nf,  to be
determined):

wllax  =
Z2

=-Ray-
nf
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We equate the magnitude of AE,,,, to the energy carried away by the emitted photon,

I IAl&,,  =hv=;

and then solve for n,  :

Z2 R,h
6 = hc

Given a wavelength of 2.279 x low6 m (or 2.279 pm) when Z =
that the transition terminates in the fifth  shell, nf= 5:

1, we determine finally

nf =
(2.18 x lo-l8  Jj(2.279  x 10e6  m)

(6.626 x 1 O-34  J sx2.998  x lo*  m s-’  )

= m

’ = ’

5oo

39. The Pfund emissions (see Exercise 38) correspond to transitions from ni = 6,7, 8, . . .
to nf= 5:

AE = -R,Z2

Substituting Z = 4 for the nuclear charge of Be3+, we can compute energy and wavelength
for emission from any initial state ni > 5. The sample calculation below is for ni = 6:

AE = -R,(4)2 x -0.1956 x (2.18 x lo-‘*  J) = -4.26 x 10-l’  J

(6.626 x 1O-34  J s)(2.998  x lo8  m s-’  ) = 4 66  x lom7  m

426x lo-l9  J.
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Values for the first four transitions are presented in the following table:

ni m (J) h 0-d COMMENT

6 -4.26 x 10-l’ 466 visible
7 -6.83 x lo--” 291 ultraviolet
8 -8.50 x 10-l’ 234 ultraviolet
9 -9.65 x 10-l’ 206 ultraviolet

40. Use the same general method as in the preceding exercises, here with nf = 4:

Z ?li

H 1 5
6
7
8

He+ 2 5
6
7
8

Li2+  3 5
6
7
8

-4.90 x 1o-2o
-7.57 x 1o-2o
-9 18x 1O-2o.
-1.02 x lo-l9

-1.96 x 10-l’
-3.03 x lo-l9
-3.67 x 10-l’
-4.09 x lo-l9

-4.41 x lo-l9
-6.81 X lo-l9
-8.26 x 10-l’
-9.20 x lo-l9

h w

4.05 x 1o-6
2.62 x 10”
2.16 x 1O-6
1.94 X lO+j

1.01 x 1o-6
6.56 x 1O-7
5.41 x 1o-7
4.86 x 1O-7

4.50 x 1o-7
2.92 x 1o-7
2.41 x 1O-7
2.16 x 1O-7

COMMENT

infrared (4.05 pm)
infrared (2.62 pm)
infrared  (2.16 pm)
infrared (1.94 pm)

infrared (1 .O 1 pm)
visible (656 run)
visible (541 nm)
visible (486 nm)

visible (450 run)
ultraviolet (292 nm)
ultraviolet (241 nm)
ultraviolet (216 run)

Since z2 = 4 for He+, each energy is quadrupled and each wavelength is cut by one-fourth
relative to hydrogen. The scaling factor Z2 for Liz+ is 9.

41. Ionization strips the atom of its electron. Accordingly, we calculate the energy and
wavelength corresponding to an absorption from ni = 1 (the ground state) to nf= 00,  just as
in Example 5-5:



5 . Quantum Theory ofthe Hydrogen Atom 143

The three ionization energies scale according to the value of 2*,  whereas the wavelengths
go as l/Z*:

z AE &) AE  (J> h Cm> 1 (m-N
H 1 1 2.18 x lo-r8  9.11 x lo-* 91.1
He+ 2 4 8.72 x 10-l’  2.28 x lo-’ 22.8
Li*+ 3 9 1.96 x 10-l’  1.01 x 1o-8 10.1

42. Conservation of energy. First, we calculate the energy needed to promote the
electron from the ground state of hydrogen (ni  = 1; 2 = 1) to the level nf = 3:

AE l-t3

Second, we subtract AEr +s  from the initial kinetic energy of the xenon atom (given as
& = 2.28 x 1 O-l* J). Doing so, we obtain the kinetic energy EL of Xe after the collision:

EL = E, -&+3

Third, we solve for the speed v’ consistent with this final kinetic energy:

EL = 3 m(v’)* =Ek-M1-+3

Substituting the mass of a xenon atom,

131.29 g Xe 1 kg 1 mol
m= x - x 1 023 = 2.180 x 1O-25mol 1000 g 6.022 kg (per atom)x atoms

we have our answer:

, _
v -

2(2.28  - $ x 2.18) x IO-‘*  kg m*  s-*

2.180 x 1O-25  kg
= 1.8 x lo3  m s-’

Note that the subtraction in the numerator limits v’ to two significant figures:

Numerator: 2.28 - $ x 2.18 = 2.28 - 1.938 = 0.34 (2 sig fig)
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43. Ionization corresponds to a transition from ni = 1 (the ground state) to nf = a (zero
potential energy):

Expressing the Rydberg constant in kilojoules per mole,

2.1798741 x 10-t* J 6.0221367 x 1O23 atoms 1 kJ
. x - = x

atom mol
x

1000 J
1.3 127500 lo3 kJ mol-’

we solve for the nuclear charge (from R&Z2  = I) and determine that Z = 5:

The nucleus of the formerly unknown monatomic ion, B4+,  contains five protons.

44. The emission series terminates in shell nf = n, as yet undetermined:

ni nf v (s-’  =Hz)

n+l n 3.93 x lOI
n+2 n 6.63 x lOI
n+3  n 8.56 x 1o14

Our task is to establish n from just these few frequencies.

(a) We begin with symbolic expressions for the first two emission energies,

A En+l 3 n = hvn+l+n =-RaZ2[~-(n:1)2] (ni  =n+l,  nf =n)

AEn+2+n =hv n+2  + n =-RwZ2[-$-cni2)2] (ni  =n+2,  nf  =n)

and use them to obtain the ratio of frequencies:

Vn+l  -5 n ne2  -(n+1)-2
=

Vn+2+n  n -2 -(n+2)-2
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Then, comparing the possible theoretical ratios (calculated for n = 1,2,3, . . .) with the
experimentally determined ratio of 0.593,

V 3 93 x 1oJ4  s-*n+l-Fn  .
= 0.593

V n+2  + n = 6.63x  1014  s-r

we eventually arrive at n by trial and error:

V n+l -+n
n

V n+2  +n

1 0.844
2 0.741
3 0.684
4 0.648
5 0.624
6 0.606

+7 0.593 c

The emissions terminate in the seventh shell, n = 7.

(b) The transition in question-fourth in the series-is from ni = 11 to nf = 7. We know
further, from Exercise 43, that 2 = 5. All that remains is to substitute the numbers.

Energy:

AE=

=- (2.18x10-‘*  J)x(~)~  x(+--+I

= -6.62 x lo--”  J

Frequency:

k=I
V

6.62  x lo-”  J = ggg  x 1ol4  s-l

=h=6.626~10-~~  J S  ’

Wavelength:

(6.626 x lO-34  J s)(2.998  x lo8  m s-’  ) = 3 o.  x lo-, m

6.62 x 10-l’  J
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45. We know, from Example 5-5 in PoC,  that the ionization energy for a one-electron
atom depends solely on a positive integer, the nuclear charge Z:

I= R,Z2 (Z= 1,2,  3, . ..)

Values of I are thus limited to R,  (when 2 = l),  4R, (when 2 = 2),  9R, (when 2 = 3),  and
so forth.

Accordingly, we must determine whether

I= 3.28 x lo3  kJ mol-’

can meet this requirement for some integral value of Z:

? Iz2=r= 3.28 x lo3  kJ mol-’ ?
=2.50=1,4,9,16 ,...

m 1.3 1 x lo3  kJ mol-’

Our answer is no: Z2 = 2.50 does not belong to the series 1,4,9, 16, . . ., and

Z = ,/%%I = 1.58

proves not to be an integer. The atom contains more than one electron.
Note that this calculation is valid only if I and R, are expressed in the same units.

See Exercise 43 for the conversion of R,  from joules per atom into kilojoules per mole.


