
Chapter 4

Light and Matter-Waves and/or Particles

Chapters 4 through 7, taken in sequence, aim to develop an elementary understanding of
quantum chemistry: from its experimental and conceptual foundations (Chapter 4), to the
one-electron atom (Chapter 5), to the many-electron atom (Chapter 6), andfinally  to the
molecule (Chapter 7).

The present chapter builds to a point where the wave function and uncertainty principle
emerge-heuristically, at least-as a way to reconcile the dualistic behavior of waves and
particles. Electromagnetic waves undergo interference; so do electrons. “Pinging”
atoms transfer energy and momentum; so do photons. A conjned  wave develops
standing modes; so does the electron in hydrogen. The hope is to instill, above all, a
respectfor the manifold difference between a deterministic macroworld and a statistical
microworld.

The exercises have a further unashamedly practical goal: to help a reader become adept
at handling some of the fundamental (yet mathematically simple) equations that underpin
quantum mechanics.

1 . The relationship connecting the wavelength, frequency, and speed of a wave
(especially as applied to electromagnetic radiation): /z  v = c

2 . The arithmetic of interference,

and the double-slit diffraction equation as a corollary: d sin6  = nil

3 . The Planck-Einstein formula: E = h v

4 . The momentum of a photon: p = i
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3. A wave crest appears only once per cycle. To observe 7200 crests at one point in
space is therefore to observe 7200 completed cycles.

(a) Convert hours into seconds:

7 2 0 0 cycles 1 h 1 min
v= h x-60 min x - =60 s 2.0 cycles s-’ = 2.0 Hz

Two cycles, on the average, are completed every second; thefrequency  is 2.0 Hz.

(b) Period (7) is the reciprocal of frequency (v):

TJ 1
--=0.50s

v - 2.0 s-’

The time needed to complete one cycle (the period) is 0.50 s.

4. The 10 1 crests delineate 100 full cycles:

C y c l e :  I+&\+-&/  a.. I+-!%[

Crest: 1 2 3 100 1 0 1

Since 100 cycles (not 101) are executed over a distance of 20 cm, the average wavelength
is 0.20 cm, or 0.0020 m:

20cm lm
h= x - = 0.0020 m

100 cycles 100 cm
(per cycle)

5. Given the speed (u) and wavelength (h),

u= looms-

h = 2 m (distance between troughs)

we solve for the frequency (v) and period (?“) of the wave:

hv  = u

24  lOOms-’

‘=X=  2 m
= 50 s-’

T=L 1
- = 0.02 s

v 5os-’
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FIGURE 4.1 Wave patterns for Exercise 7. The upper panel shows the sinusoidal disturbance itself,
oscillating positive and negative with an amplitude of 10 units. The intensity, depicted below, is
everywhere positive and has a maximum value of 100 units (the square of the amplitude).
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(a) See the graphs displayed in Figure 4.2 (next page). The wavelength off+ g remains
the same as forfand g alone, but the combined amplitude doubles and the combined
intensity quadruples:

Amplitude: A+A=10+10=20

Maximum intensity: (A + A)2  = 202  = 400

(b) With A = 10 for bothfand g, the combined intensity

I cc  4 A2 sin2 0 = 400 sin2 0

oscillates between a minimum of 0 (when sin2  8 = 0) and a maximum of 4A2 = 400 (when
sin2  8 = 1):

(c) Energy is maximum at crest and trough.

(d) Energy is minimum (zero) where the disturbance is zero: midway between crest and
trough.

9. Destructive interference. Here we have two waves equal in amplitude and frequency,
but differing in phase by x radians (180”):

f = Asin

g = A sin@ + x) = -A sin 8

The oscillations are out of step by half a cycle: When f is at a crest, g is in a trough;
when f is in a trough, g is at a crest. See Figure 4.3 on the second page following.

(a) The two waves, out of phase by 180”,  annihilate each other. The combined amplitude
and intensity are both zero-flat lines:

(b, c, d) Energy is zero everywhere.
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I In phase: maxinkm  intensity = 20.x 20 = 400 I
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FkUFE 4.2 Wave patterns for Exercise 8. The combined amplitude of identical wavesf+  g (upper
panel) measures 20 units, twice the value found for the uncombined wave in Figure 4.1. The
maximum intensity, the square of the amplitude, measures 400 units-four times the value obtained
from the uncombined wave.
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Wave f:  Relative Phase = 0
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FIGURE 4.3 Wave patterns for Exercise 9. Out of phase by one half-cycle (180”),  the two
disturbances interfere destructively. Their combined amplitude and intensity are zero.
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10. The waves will combine constructively, in phase, when their path lengths differ by
some integral number of wavelengths:

dsin0 = nh (n=1,2,...)

For n = 1 (the first maximum) we find that the corresponding wavelength is 5 .O x 1 O-’  m,
or 500 nm:

h = dsin8 = (1.0 x low6 m)(sin30”)

1IIm
=5.0x10-‘mx-

lo-’  m
=5.0x102  nm

See pages 113-l 15 of PoC and also Example 4-3 (beginning on page R4.8).

11. Use, as in the preceding exercise, the double-slit diffraction equation with n = 1:

dsinO=nh=h (n = 1)

Specifying a wavelength of exactly 1 mm, for example, we see that a slit spacing of
2.9 mm will produce (within two significant figures) a diffraction maximum at 20”:

h 10m3 m
d =-=-=2.9x1O-3 m

sin8 sin 20”

The remaining values follow directly:

h 0-4 d (m>

00 1o-3 2 .9 x 1o-3

@I 1o-6 2.9 x 1o-6

(cl 1o-g 2.9 x 1o-g

Exercises I2 through I5 pertain to the classical picture of electromagnetic radiation.

12. We use the term electromagnetic wave to describe the influence produced by an
oscillating electric and magnetic field. Propagating in vacuum at the speed of light,

c M 3.00 x lo* m s-t

the influence exerts a force on charged particles and electric currents. Wavelengths range
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from zero to infinity, in principle, with the corresponding frequencies determined
reciprocally:

hV=C

See pages 105-l 11, R4.2-R4.3,  and Examples 4-1 and 4-2 in PoC.

13. In vacuum, electromagnetic waves propagate at the same speed regardless of
frequency:

c = 2.99792458 x lo*  m s-’

The distance traveled in 1 .OOO s is therefore the same for each of the frequencies stated:

(2.99792458 x 10’  m s-‘)(l.OOO  s) = 2.998 x lo8  m z 3.00 x lo*  m

QUESTION: Are there circumstances under which the speed of light will vary with
frequency?

ANSWER: Yes, the phenomenon is very common. First, the value c is fixed only
in vacuum. Everywhere else-in any material medium (plastic, glass, silicon, water,
air, . . .)--cl tec romagnetic waves travel at speeds slower than 2.99792458 x lo* m s-l,
although the deviation in air is very slight. A parameter called the index of refraction (n)
relates the speed in a material (u) to the speed in vacuum (c):

C
u=-

n

The index is different for different substances. Yellow-green light near 5500 A, for
example, travels through air with n = 1.0003, but it travels through water with n = 1.33
and through glass with n = 1.6.

Second, even in the same material, the index of refraction varies with frequency
and wavelength. We see this very effect, called dispersion, in the colors of the rainbow.
Various wavelengths of visible light travel at different speeds through a glass prism,
dispersing into bands of colors as the rays emerge at different points.

Remember, finally, that we often use the term “light” to mean electromagnetic
radiation in general, not just the restricted portion of the spectrum known as visible light.
Dispersion properties vary widely across the electromagnetic spectrum, and a material
transparent to, say, X rays may well be opaque to ultraviolet or visible light.

QUESTION: Granted, electromagnetic radiation travels slower than c in a
medium-but can it sometimes travel faster than c as well?

ANSWER: No. Classical electromagnetic theory fixes c as the maximum speed of
transmission, attainable only in vacuum. Further, Einstein’s theory of special relativity
(see Chapter 2 1) shows that no signal of any kind may convey information faster than c.
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QUESTION: The universe apparently imposes a large but finite speed
limit: c = 3.00 x lo8  m s-‘, the speed of light in vacuum. But now we know that light in
a material (not vacuum) always propagates at some speed u slower than c. Is it possible
for an object or signal to travel faster than u in a given material?

ANSWER: Yes, and the phenomenon can lead to interesting effects-sometimes
even to an electromagnetic “shock wave” analogous to the sonic boom produced by a
supersonic aircraft.

14. To calculate the wavelength, use the relationship

hv  = c

where c = 2.998 x 10’  m s-l. For example (with v = 7.67 x 1015  Hz):

c 2.998 x lo*  m s-l
h z-z = 3.91 x lo-*  m

V 7.67 x 1015  s-l

Converting prefixed units as needed,

1 Hz= 10-3kHz=  10-6MHz=  lo-‘GHz=  1 s-l

we then determine the full set of wavelengths:

(a)

@I
(cl

(4
(e)
(0

v (s-l = Hz)

7.67 x 1015
7.70 x lo5
3.17 x lo*
1.03 x log
5.00 x 1o14
8.02 x 1013

h (4

3.91 x lo-*
3.89 x lo2
9.46 x 10-l
2.91 x 10-l
6.00 x 1O-7
3.74 x 1o-6

COMMENT

ultraviolet (=  400 A)
radio (770 kHz)
radio (3 17 MHz)
microwave (1.03 GHz)
visible (600 nm, 6000 A)
infrared (= 4 pm)

Figure 4-4 and the text on pages 11 O-l 11 of PoC  provide a rough breakdown of the
electromagnetic spectrum according to wavelength and frequency.

15. Here we calculate the frequency v given the wavelength A. Substitute

c = 2.998 x IO* m s-l

into the equation

hv  = c
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and solve for v, making use of the following conversion factors:

1m=103mm=106pm=109nm=1010A

One calculation of this type should suffice. Choose h = 0.761 A = 7.6 1 x 10-l’  m:

v=L
2.998 x 10’  m s-l

h 7.61 x 10-l’  m
= 394 x 1o18  s-’

’

Consult pages 110-l 11 in PoC  to assign each wavelength to its portion of the
electromagnetic spectrum:

(4
@I
w
(d)

(e)
(0

1 b-0

7.61 x 10-l’
4.01 x 1o-3
1.15 x lo2
5.617 x 1O-7
2.18 x 1O-7
1.06 x 1O-6

v (s-l  = Hz)

3.94 x lOI
7.48 x 10”
2.61 x lo6
5.337 x lOI
1.38 x lOI
2.83 x 1014

COMMENT

X ray (0.761 A, borderline y)
microwave (4.01 mm, borderline ir)
radio (2.61 MHz)
visible (5617 8, 561.7 nm)
ultraviolet (2180 A, 218 nm)
infrared (1.06 pm)

The shorter the wavelength, the higher the frequency.

Photons and the photoelectric effect are covered in Exercises 16 through 24.
See Section 4-4, pages R4.3-R4.4,  and Examples 4-4 and 4-5 in PoC.

16. Use the relationship

E = hv

between photon energy (I$) and frequency (v), substituting the value

h = 6.63 x 1O-34  J s

for Planck’s constant and converting all prefixed units of frequency into s-l:

1 Hz= 10-6MHz=  10-9GHz=  1 s-l

One sample calculation (for v = 1 MHz) will illustrate the procedure:

E = hv = (6.63 x 1O-34  J s) 1 MHz x = 6.63 x W2*  J
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Full results follow:

v (Hz E s-l) E (J)
(a) lo6 6.63 x 1O-28
(b) lo8 6.63 x 1O-26
(c) log 6.63 x 1O-25

(4 lOI 6.63 x 1O-22

69 lOI 6.63 x 10-l’

(9 lOI 6.63 x lo--l6

COMMENT

radio (1 MHz, 300 m)
radio (100 MHz, 3 m)
microwave (1 GHz,  0.3 m)
infrared (0.3 mm)
ultraviolet (3000 A)
X ray (3 A)

The higher the frequency, the higher the energy.

17. Combine  the equation

hv  = c

with the Planck-Einstein relationship

E = hv

to obtain the dependence of photon energy on wavelength:

Thus for a wavelength of exactly 1 m, the corresponding energy has magnitude hc:

E = & = (6.626  x lO-34  J ~)(2.998  x lo8  m S-I)  = 1 986 x 1o-25  J
h l m

To express this benchmark energy in kJ mol-‘, as requested, we convert joules into
kilojoules and multiply by Avogadro’s number:

1.986 x 1O-25
E =

J 1 kJ

xiiEx
6.022 x 1O23  photons

photon mole
= 1.196 x lop4 kJ mol-’

Three digits will be enough, however, for our present purposes, and so we shall take

E = 1.99 x 1 O-25  J per photon = 1.20 x 10”’  kJ mol-’

as an approximate reference value. Energies for wavelengths other than 1 m scale in
inverse proportion, provided that prefixed units of length are reexpressed in meters:
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h (m) E (J per photon) E (kJ mol-‘)

(a) 10’ 1.99 x 1 o-25 1.20 x lo4

Q-9 1o-3 1.99 x 1o-22 1.20 x 10-l

(4 1o-6 1.99 x lo-l9 1.20 x lo2

w 1o-9 1.99 x lo-l6 1.20 x lo5

(e) 1 o--l2 1.99 x lo-l3 1.20 x lo*
(0 lo-l5 1.99 x lo-‘O 1.20 x 10”

The shorter the wavelength, the higher the energy.

COMMENT

radio (1 m)
infiared./microwave  (1 mm)
infrared (1 pm)
Xray(1 nm)

Y  ray  (1 PM
wv(l fm>

18. A minor variation on the preceding exercise. We use the relationship

to solve for frequency and wavelength:

E
v=-

h
h=g

The calculation for E = 1 O-26  J is typical:

E 1O-26  J

’ = %-  = 6.626 x 1O-34  J s
= 1.509 x 10’ s-’

h = k

E=

(6.626 x 1O-34  J s)(2.998  x lo*  m s-‘) = l9  g6 m

1O-26  J

The full  set of values is tabulated below to three digits:

E (J) v (Hz = s-‘) h (ml COMMENT

6) 1 o-26 1.51 x 10’ 1.99 x 10’ radio (~20  m, 15 MHz)

m 1 o-25 1.51 x lo* 1.99 x loo radio (~2 m, 150 MHz)

09 1o-21 1.51 x lOI 1.99 x lo4 infrared (~0.2 mm)

09 1 o-2o 1.51 x lOI 1.99 x 1o-5 infrared (a20  pm)

09 lo-l9 1.51 x lOI 1.99 x 10m6 infrared{=2  pm)

(f) 1 o-l6 1.51 x 10” 1.99 x 1o-9 X ray (a2 nm)

As energy goes up, so does the frequency. The wavelength, shorter at higher energies,
decreases in inverse proportion.
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19. Note the definition of electrical power implicit in the statement of the problem:

Power
energy J
=-  - -=W  (watt)

time s

(a) Given both power and time, we can calculate the total energy radiated:

Energy = power x time

To obtain a value in joules, we need only to convert the time from hours into seconds:

Energy =yx(l  hxy) =2.2x105  J

Wattage and time alone--’irrespective of wavelength-specify the macroscopic energy.

(b) The total energy carried by N photons, EN, is the sum of N quanta (each equal to hv):

Nhc
EN = Nhv=-

h

Inserting the wavelength h (given as 5000 A = 5.000 x lo-’  m) and the energy calculated
above (2.16 x 10’  J before round-off), we then solve for h!

AENNC----
(5.000 x lo-’  m)(2.16  x 10’  J)

hc - (6.626 x 1O-34  J s)(2.998  x lo8  m s-‘)
= 5.4 x 1O23  photons

20. Carry over, from the preceding exercise, the expression we derived for the photon
number N that gives rise to a total radiant energy EN:

AENN=-
hc

Substituting unit values for h and EN, we first calculate a reference photon number

N=; (h=hl,E, =lJ)

to be used throughout:

N =
(1.00 m)(l.OO  J)

(6.626 x 1 O-34  J sx2.998  x 1 O8 m s-’  )
= 5.03 x 1O24  photons (1 m, 1 J)
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Values for all of the requested wavelengths scale in direct proportion:

h 0-4 N

(a) km lo3 5.03 x 102’
(b) m 10’ 5.03 x 1o24

(4 m m 1o-3 5.03 x 102’

w Pm 1O-6 5.03 x 1o18

(4 x-m 1o-9 5.03 x 1o15
(9 pm 1 o-l2 5.03 x lOI

(g)  fm lo-l5 5.03 x lo9

The shorter the wavelength, the more energetic is the photon. Fewer such photons are
needed to produce a given total energy.

21. We use our workhorse equation

once again, this time solving for the wavelength ho that exactly matches the work
function (Eo  = 3.43 x 1 O-t9 J):

h _ hc -(6.626x1O-34  Js)(2.998x108  ms-‘)C57glo-’  m
O E,- 343x IO-t9  J

. x
.

The threshold wavelength is 5.79 x lo-’  m (equivalently, 579 run or 5790 A). Any
photon with a longer wavelength will have an energy Zess than the required work
function, 3.43 x 1 O-l9  J.

22. Knowing the work function (Eo  = 3.69 x lo-l9  J), we establish a maximum
wavelength above which no photoelectron will be ejected:

h = hc (6.626 x 1O-34  J sx2.998  x lo*  m s-l)
-=

O Eo 3.69 x lo-l9  J
=5.38x10-’ m (538nm)

(a) A wavelength of 538 nm is just barely sufficient to overcome the work function.
Each photon has an energy

E=jpF = 3.69 x lo-l9  J

equal to Eo, as shown above for h = ho.
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Given the total energy EN delivered by N photons,

EN=  Nhv = 3.69 x lo--l6  J

we then calculate the number of quanta:

EN 3.69 x lo-l6  J
N=-=

h v 3.69 x IO-19  J  =  1’oox  lo3

(b) Wavelength = 500 nm. Here the individual photon energy

E _ hv  _ hc (6.626 x 1O-34  J sx2.998  x 10’  m s-‘) = 3 97lo-,9  J
h- 5.00 x lo-’  m

. x

exceeds the work function (Eo  = 3.69 x lo-l9 J), and therefore each photoelectron will
emerge with a certain excess kinetic energy:

Ek = hv - E.

The number of such photoelectrons, however, will be no greater than the number of
incident photons that deliver the known total energy (EN  = 3.97 x 1 O-l6 J):

E,,, 3.97x  lo-l6  J
N=--

hv - 3.97 x lo-l9  J
= 1.00 X lo3

(c) Photons with a wavelength of 600 nm are insufficiently energetic, one by one, to
expel a photoelectron from the metal. No photocurrent will be produced under any
circumstances, even though the total energy (EN = 3.3 1 x lo-l4  J) is comparatively high.

23. Similar to Example 4-5. Ask, first, whether each individual photon can deliver
enough energy to eject an electron:

E = hv  = k =
h

(6.6261 x lO-34  J sx2.9979  x 10’ m s-l)  = 4 5249  x 1o-,9  J
4.390 x lo-’  m

It can: The photon energy (4.52 x lo-l9 J) is greater than the work function (given as
4.41 x lo-l9  J).

Note, in passing, that we have used the conversion

1 A= lo-“m

to reexpress h in meters. Also, to minimize machine errors in this particular exercise, we
quote h and c to five digits and (as usual) do not round off the intermediate results.
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(a) Any difference between the photon energy (E = hv) and the work function (I&)  is
carried away by the photoelectron in the form of kinetic energy:

E, =hv-E ,

= (4.5249 - 4.41) x lo-l9  J

= 0.1149 x lo-l9  J

= 1.1 x 10e2’  J (2 sig fig)

From the kinetic energy,

E, =;mv2

we then compute the magnitude of the velocity:

= 1.59 x lo5 m s-’

= 1.6 x lo5 m .s-’ (2 sig fig)

And also the momentum:

p=mv

= (9.11 x 10e3’  kg)(1.59  x 10’  m s-‘)

= 1.4 x 1O-25  kg m s-’ (2 sig fig)

(b) Each of N photons contributes

E = hv = 4.5249 x lo-l9  J

to produce a total energy of 5.00 joules:

EN  = Nhv = 5.00 J
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The resulting value of N is good to three significant figures:

E N 5.00 JN=--
hv - 4.5249 x lo-l9  J

= 1.10 x lOI

If each photon ejects a photoelectron (our implicit assumption), then illumination at this
intensity will produce 1.10 x 1 019  photoelectrons.

24. Here the energy of a single photon,

E = hv = (6.626 x 1O-34  J s)(6.63  x lOI s-i)  = 4.39 x 1O-2o  J

is insufficient to overcome the stated work function:

E. = 4.41 x lo-l9  J

No photocurrent will be produced.

Exercises in the next group deal with the de Broglie wavelength, illustrating its variability
even among microscopic particles. Exercises 2.5 and 28 demonstrate, for example, that
an electron has notjust  one de Broglie wavelength, but rather it has as many de Broglie
wavelengths as it has possible velocities. Exercises 26, 27, and 29 show that particles
with different masses (electrons andprotons) will have the same de Broglie wavelength tf
they have the same momenta-but not tfthey  have the same velocity Exercise 30,
concluding the block, demonstrates that R &B eff.iCtiVdy  vanishes for macroscopic objects.
See pages 133-136, page R4.4, and Example 4-6 in PoC.

25. The de Broglie wavelength

h
h h

deB = p = z (1)

is determined by the momentum of the particle:

p=mv

The momentum, in turn, is determined by the kinetic energy,

1 P2E, =Tmv’  =G

from which we derive an alternative expression for the magnitude ofp:
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Combining equations (1) and (2),  we then have a form

h h
h --=

deB - p JIG& (3)

in which the kinetic energy is simply the difference between the photon energy (E = hv =
hclh) and the work function:

hc
E, =E-E,=--EE,

h (4)

Note that h (without subscript) denotes here the wavelength of the incident light, whereas
the subscripted h&n in (3) denotes the de Broglie wavelength of the ejected photoelectron.

The units of h&a,  finally, reduce properly to meters:

(a) Arising from a wavelength of 3 .O x 1 O-’  m, the energy of the photon matches-but
does not exceed-a work function of 6.6 x lo-l9  J:

E
=

& = (6.626 x 1O-34  J s)(2.998  x lo8 m s-‘) = 6.6  x lo-,9 J

h 3.0 x lo-’  m

With little or no excess kinetic energy,

E, = E - E, = (6.6 - 6.6) x lo-t9  J = 0

the photoelectron behaves as if its de Broglie wavelength were approaching infinity.

(b) Substitute the values

h = 2.8 x lo-’  m

E, = 6.6 x lo-l9  J

h - 6 626 x 1O-34  J s- .

c = 2.998 x lo8 m s-’

m = 9.11 x 10T3’  kg

into the expressions for Ek and h&a derived above:
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hc=--4 ,A J%

hdeB  = J&

The value obtained for h&a is 2.2 x lo-’  m, approximately 2 nanometers.

(c) Recalculate h &a using the same method as in part (b), this time taking
h = 2.5 x lo-’  m for the wavelength of the photon. With more kinetic energy
imparted to the photon, the value of h&a falls to approximately 1 nanometer:

hdeB  = 1.3 x 1 omg  m

The de Broglie wavelength decreases as the velocity of the photoelectron increases.

26. Substitute

hdeB  = 1 8,  = losio  m

into the defining relationship,

h
P=h,,,

and solve for the momentum:

p = 6.63  x 1O-34  J s 6.63 x 1O-34  (kg m2  s-‘) s
l()-lo  m = lo-”  m

= 6.63 x 1O-24  kg m s-’

The associated velocity follows directly:

p=mv

p 6.63 x 1O-24  kg m s-’
V z-z = 7.28 x lo6  m s-’

m 9.11 x 1O-31  kg

27. The de Broglie wavelength,

h
h

deB = -
P
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is identical for any two particles that happen to have the same momentum. Thus a proton
with a wavelength of 1 A,

hde~  = 1 A = 10-l’  m

carries the same momentum as an electron with an equivalent 1-A  wavelength. Mass
does not enter explicitly into the calculation:

*L-
h deB

6.63  x 1O-34  J s 6.63 x 1O-34  (kg m*  s-’ ) s
= lo-IO  m = 10-l’  m

= 6.63 x 1O-24  kg m s-’

The velocity, however, derives from the relationship

p=mv

and scales in inverse proportion to the mass:

p 6.63 x 1O-24  kg m s-’
V z-z = 3.97 x lo3  m s-’

m 1.67 x IO-*’  kg

The proton, more massive than the electron, moves more slowly for a given amount of
momentum.

28. See Example l-6, beginning on page R1.14 of PoC,  for the relationship between
voltage and electrical work:

Work = voltage x charge transferred

The volt, with units of joules per coulomb, specifies the difference in potential energy
between two points in an electric field:

An electron, with negative charge of magnitude e = 1.60 x lo-l9  C, thus has a kinetic
energy of 1.60 x lo-l9 J after accelerating through a potential difference of 1 volt:

F x (1.60 x lo-l9 C) = 1.60 x lo-l9  J
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When the potential difference is increased to lo4  V, as here, the kinetic energy
goes up by the same factor:

lo4  J
E, =- x 1.60 x lo-l9  C)

C (

= 1.60 x lo-l5  J

= 1.60 x 10-l’  kg m*  s-*

Substituting both this value and the mass of an electron (m = 9.11 x 1 Ov3’  kg) into the
expression for kinetic energy,

1
E, =~mv*

we solve for the terminal velocity (ignoring’s  small relativistic correction):

The de Broglie wavelength, finally, is determined by the mass and velocity together:

h
h 6.626 x 1O-34  (kg m*  s-*) s

deB = & = (9.11 x 10e3’  kg)(5.93  x lo7  m s-l)

= 1 23  x lo-‘, m

*

29. Since the charge on a proton,

e = 1.60 x lo-l9  C

has the same magnitude as the charge on an electron, the proton attains the same kinetic
energy calculated in the preceding example, Electrical energy is independent of mass:

E, = voltage x charge transferred = electrical work

lo4  J
= - x 1.60 x lo-l9

C ( Cl

= 1.60 x lo-l5  J

= 1.60 x lo-”  kg m*  s-*

With the larger mass, however, the proton accelerates to a smaller velocity but to a larger
momentum-and consequently develops a smaller de Broglie wavelength.
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The velocity (from & = $zv’):

v=~~~~43~4x10’  ms-’

= 1.38 x lo6 m s-r (3 sig fig)

The de Broglie wavelength:

h
h 6.626 x 1 O-34  (kg m* s-*  ) s

deB  = G =
(1.67 x 1O-27  kg)(1.384  x lo6 m .s-‘)

=287x10-I3  m
’

30 . With objects so massive, the de Broglie wavelengths prove to be vanishingly small-
far smaller than any atomic or nuclear scale.

(a) Substitute mass and velocity into the de Broglie relationship:

h
h

deB  = K =

6.63 x 1O-34  (kg m*  s-‘)  s = 9.5 x 1 o-37  m

(70 kg)(lO m s-l)

(b) Reexpress 10 g as 0.010 kg:

h
h

6.63 x 1O-34  J s
deB  = & =

(0.010 kg)(250 m s-‘)
=27~10-~~  m

’

(c) Convert grams into kilograms and miles per hour into meters per second:

1 kg2oogx-=
1000 g

0.200 kg

100 mi 5280 ft 12 in 2.54cm 1 m 1 h
- x - x - x

h mi fi in
- = 44.7 m s-’

‘%‘36OOs

The resulting de Broglie wavelength is 7.42 x 1O-35  m:

h
h 6.63 x 1O-34  J s

deB  = & =
(0.200 kg)(44.7  m s-‘)

=742~10-~~  m
’
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(d) The equivalence between mass (kilograms) and weight (pounds) in the earth’s
gravitational field is stated in Table C-4 of Appendix C (PoC,  page A64):

0.453592 kg = 1 lb

We convert pounds into kilograms and miles per hour into meters per second,

4000 lb x
0.453592 kg

lb
= 1814 kg

60mi 528Oft 1 2 in 2.54cm 1 m 1 h
- x - x - x

h mi
x - x - --

ft in 100 cm 3600
26.8 m s-r

s

from which we obtain the corresponding de Broglie wavelength:

h
663x 1O-34  J s- - -

deB -  ,f,, -  (,,,, kgX26m8  m  s-l) = ls4  ’ low3*  m

The result is limited to two significant figures by the initial value of velocity.

The set concludes with an exploration of the Heisenberg uncertainty principle, similar in
spirit to the treatment of the de Broglie wavelength just above. Issues considered include
the basic operation and applicability of Heisenberg s equation, the difference between
momentum and velocity, the effect of mass, and the apparent restoration of deterministic
certainty in macroscopic systems. See pages 142-I 44, page R4.5, and Example 4-  7 in PoC.

31. The uncertainty principle puts limits only on the simultaneous measurement of
momentum and position:

We can measure either quantity (p or x) to theoretically arbitrary accuracy, albeit one at
the expense of the other.

Thus to determine an electron’s momentum with vanishing uncertainty (Ap = 0),
we must do so under conditions where the uncertainty in position,

approaches infinity. To determinep with absolute certainty is to forfeit all knowledge of
x, and-with perfect symmetry-to determine x with absolute certainty is to forfeit all
knowledge ofp. The two uncertainties are relative, not absolute; they stand in inverse
proportion.
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32. An electron confined to a small region in space manifests a large uncertainty in
momentum. We know where the particle is, but we do not know what it is doing-its
speed, direction, and momentum.

A poorly localized electron, by contrast, has a well-defined momentum within the
limits of the Heisenberg uncertainty principle. The spreads in momentum and velocity
decrease as the spatial interval becomes larger (LYC  increases).

Since the positional uncertainty in our present system is already fixed (AX =
I x2 - x1  I ), the related uncertainty in momentum is bounded by the Heisenberg
relationship. We continue to use the approximate form:

ApAx>h

The uncertainty in velocity is then determined straightforwardly from the definition of
momentum:

Ap=rnAv>$

h
Av>-

mhx

Note further that the uncertainty in X,

Ax= Ix2-x1I

depends only on the difference between x2 and x1,  not on any absolute position. Hence AX

is the same in parts (a), (b), and (c),

and we shall use this value for a rough sample calculation (rounded off to just one digit):

Ap,;  =
6.63 x 1O-34  (kg m2  sw2) s

1 x 10e3  m
x 7 x 10m3’  kg m s-’

h
Av>-=

6.63 x 1O-34  (kg m2  s-‘)  s

mhx (9.11 x 10q3’  kg)(l x 10e3  m) Z Oe7 m ‘-’

A complete set follows on the next page.
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h (ml Ap (kg m s-‘) Av (m s-‘)

(a) 1o-3 > 7 x 1o-3’ >7x  10-l

e-9 1o-3 > 7 x 1o-3’ >7x  10-l

w 1o-3 > 7 x 1o-3’ >7x  10-l
03 1 o-6 >7x 1o-28 >?x lo2

63 1o-9 >7  x 1o-25 >ix lo5

33. Given a value for the kinetic energy,

2

E, =imv2  =k

= 1.6 x lo-l6  J

= 1.6 x IO-l6  kg m2 sm2

we calculate the associated momentum and velocity.

Momentum:

p=JzmEk= 2(9.11  x 10m3’  kg)(l:6  x lo-l6  kg m2 sm2)  = 1.7 x 1 O-23  kg m s-’

Velocity:

p=mv

p 1.7 x 1 O-23  kg m s-’
v=--=

m 9.11 x 1O-3’  kg
= 1.9 y 10’ m s-’

To estimate the minimum spreads in momentum, we then consult the corresponding
uncertainties Ap already computed in the previous exercise-which remain fixed for a
given spread in position, AX:

Ax (m> p f Ap (kg m s-‘) v+Av(ms-‘)

(4 1o-3 (1.7 x 10-u)  z!I (7 x lo-s’) (1.9 x 10’)  f (7 x lo-‘)

u-9 1o-6 (1.7 x 10-23)  z!z  (7 x 10-28) (1.9x lO’)f(7x  102)

(c) 1O-9 (1.7 x 10-23)  I!I (7 x 10-25j (1.9x lO’)rf:(7x  105)
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Observe here that the indeterminacy in momentum,

Ap>S

is inversely proportional to Ax and thus becomes more important as the opening narrows.
The percent uncertainties in momentum, for example, range from a mere

- x 100% k: 0.000004%
P

when AX = 1 mm to a more substantial 4% when AX = 1 mn.

34. Use the same method as in Exercises 32 and 33, this time substituting

m = 1.67 x 1O-27  kg

for the mass of the particle.

Momentum:

p=J2mE,= 2(  1.67 x 1 Om2’ kg)( 1.6 x 1 O-t6 kg m2 s-’ ) = 7.3 x 1 O-22 kg m s-’

Velocity:

V
p 7.3x.10~~~  kgms-’  =44x1o5  ms-lz-z
m 1.67 x 1O-27  kg ’

The values of Ap, dependent only on AX, are the same for proton and electron. The
proton’s 1836-fold  larger mass, however, shows up in its smaller values of Av:

> p k Ap (kg m s-l’

(7.3 x 10-22)  f (7 x

(7.3 x 10-22)  + (7 x

(7.3 x 10-22)  f (7 x

) v k Av (m s-l)

o-3’) (4.4 x 105)  z!I (4 x lo+)

o-28) (4.4 x 105)  + (4 x 10-Q

o-25) (4.4 x 105)  + (4 x 102)

35. The method is the same as in the preceding three exercises. Results are tabulated at
the top of the next page:
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PARTICLE MASS  (kg) h 69 p +  Ap (kg m s-‘)

6.65 x 1O-27 1o-3 (1.5 x 10-2’) f (7 x 10-3’)

10” (1.5 x lo;2’) * (7 x 10-28)

1o-9 (1.5 x 10-2’) f (7 x 10-25)

(b)  N2 4.65 x 1O-26 1o-3 (3.9 x 10-2’) f (7 x 10-3’)

1O-6 (3.9 x 10-2’) f (7 x 10-28)

1o-9 (3.9 x 10-2’) f (7 x 10-25)

( c )  C,2H220,,  5 . 6 8  x  1O-25 1O-3 (1.3 x 10-20)  * (7 x 10-3’)

10” (1.3 x 10-20)  f (7 x 10-28)
1o-9 (1.3 x 10-20)  f (7 x 10-2s)

v + Av (m s-l)

(2.2x lOQ(1 x lOA)

(2.2 x 105)f  (1 x lo-‘)

(2.2 x 10S)  Ik  (1 x 102)

(8.3 x 104)+(1 x lo-‘)

(8.3 x 104)&(1  x 10-2)
(8.3 x 104) f (1 x 10’)

(2.4 x 104) + (1 x 10”)

(2.4 x 104)&(1  x 10-3)
(2.4 x 104)+(1 x IO’)

36. The approximate uncertainty in velocity,

h
Av> k c -

mClx

proves to be infinitesimally small for a macroscopic system. A large mass ensures that Av
will be a tiny fraction of the velocity: Aviv  <c  1.

(a) Converting grams into kilograms and microns into meters,

m=lOOgx
1 kg-=O.lOOkg

1000 g

l m
LSx=lpmx  6 = 1 x 10m6  m

10 pm

we obtain Av in meters per second:

h
Av>--

6.63 x 1 O-34  (kg m2  sm2)  s

mAx- (0.100 kg)(l x 10e6  m)
= 7 x 1O-27  m s-’

(b) The percent indeterminacy in velocity is minuscule:

\IxlOO%=
7 x 1O-27  m s-t

V 30 m s-’
x100%=(2x10-9%
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37. The description implies that Ap = 0. If so, then Ax must be infinite and we can say
nothing about the position. The free electron is, so to speak, a “big” particle, completely
delocalized. It might be anywhere. We don’t know.

38. Near the nucleus, where the electron’s indeterminacy in position is small, its
indeterminacy in momentum is correspondingly large. See pages 150-l 5 1 in PoC.


