
Chapter 10

Macroscopic to Microscopic-Gases and Kinetic Theory

Exercises in Chapter IO follow the two-part division of the white pages, establishingjrst
the macroscopic foundations of the gas laws and then seeking a microscopic explanation.
The resulting statistical theory, an inspired exploitation of ignorance, treats the gas as an
enormously large collection of point particles in random motion. This reconciliation of
chance and inevitability will be echoed late<  in Chapter I-l, when we identifj,  entropy as
the statistical driving force in all chemical processes.

The idealized nature of an ideal gas-its absence of interparticle interactions, its
eradication of all chemical distinctions, its restriction to low densities-is implicit here
throughout, acknowledged as a small price to pay for the universality of this simple
model. “Real ” gases, in which particles clearly do interact and clearly do take up space,
appear in due course, in the very next chapter: And there, with the assumptions of the
ideal gas relaxed, the intermolecular interactions introduced earlier in Chapter 9 are
shown to engineer the gas-liquidphase transition. That change in state, in turn, gives us
a prototypical example of dynamic equilibrium, which leads us into a three-chapter
sequence on equilibrium and thermodynamics (Chapters 12 through 14).

The opening problems deal with the macroscopic variables of pressure and temperature,
emphasizing basic characteristics andprovidingpractice in dimensional analysis. Soon
after, beginning in Exercise 11,  the focus turns to the gas laws themselves and eventually
to the microscopic just$cations  of the kinetic theory

1. Pressure is the force exerted per unit area. The greater the force and the smaller the
area, the higher the pressure. See PoC,  pages 353-355 and 370-374.

(a) Each object has the same mass (1 kg) and hence the same weight in a local
gravitational field. Since the weight arises from the gravitational force exerted on the
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mass, the body with the smaller area on its bottom side-the smaller “footprint”-
produces the greater pressure:

ObjectA: Area= 100cmx  lOOcm=  1 mx 1 m= 1 m2

Object B: Area= IOOOcmx  lOOcm=  10mx 1 m= 10m2

Object A distributes its 1 kilogram over 1 square meter, whereas object B distributes the
same 1 kilogram over 10 square meters. The pressure generated by A is higher.

(b) Given the mass (m), area (A), and acceleration due to gravity (g), we obtain the
pressure directly:

p _ force mg
- - - --

area A

The pressure from object A is 9.81 newtons per square meter (assuming three significant
figures):

PA  =
1 kg x 9.81 m sm2

m2
= 9.8 1 N me2 =

1
9 .8 1 P a

Acting over a tenfold greater area, object B imposes one-tenth the pressure of A:

PB =
1 kg x 9.81 m ss2

10m2
= 0.98 1 N mm2  = 0.98 1 Pa

Recall from Chapter 1 (pages 18-20) that the SI unit of force, the newton, is derived from
Newton’s second law:

Force = mass x acceleration - kg m sV2 = N

2. Determined only by mass and gravitational acceleration, the force F developed in each
orientation is the same:

The corresponding pressure, however, depends on area:
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Taking orientation (a), for instance, we find that the fixed force of 9.81 N is
distributed over an area of 10 m* to produce a pressure of 0.98 1 Pa:

A= 1OOOcmx  100 cm=10mx1m=10m2

F 9.81 N
p=-=- = 0.981 Pa

A lOm*

Results for all three orientations are calculated below to three significant figures
(consistent with the stated value of g):

DIMENSIONS OF BASE (cm x cm) AREA (m*) PRESSURE (Pa)

(a) 1 0 0 0 x 1 0 0 1 0 0 . 9 8 1
(b) 1 0 0 0 x 1 0 1 9 . 8 1
w 1 0 0 x 1 0 0 .1 9 8 . 1

3. Atmospheric pressure denotes the force imposed on the earth’s surface by a column of
air, measured per unit area. The column, filled with molecules in motion, extends from
the ground up to outer space.

To say that “atmospheric pressure is 101,325 pascals” is to say that the molecules
contained in this column exert a net force of 101,325 newtons on I square meter of
ground.

4 . We are given the pressure exerted by a circular column of diameter 2r and area xr*,

P = { = 1.01325 x 10’  Pa = 1.01325 x 10’  N m-*
A

2r = 1.00 cm

A = xr2 = T[:  0.500 cm x ~
i

= x( 5 . 0 0  x

from which we calculate the associated force:

F = PA = (1.01325 x lo5 N mV2)n(5.00x  10e3

Oe3 m *)

n > * = 7.96 N

5. First, determine that a mass of 1 .OO kilogram has a weight of 9.81 newtons:

F=mg= l.OOk, 0 x 9 . 8 1 m se2 = 9 . 8 1 kg m s-* = 9 . 8 1 N
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From the information given in the problem,

MASS FORCE

l.OOkg=2.21  lb

we know also that 9.81 N (the force arising from 1 kg) is equal to 2.21 lb.
With that, we use the unit-factor method to convert newtons into pounds and

square meters into square inches:

1.01325 x lo5 Pa x ’ Npr-2 x G x ( Im x 2*54  cm)2
1OOcm  in

= 14.7 lb in-*

6 . Outside the tire, the air exerts a pressure of 14.7 lb in-* pressing inward (see previous
exercise). Inside the tire, the compressed air must exert a balancing pressure of 14.7 lb in-*
plus a net pressure of 30.0 lb in-*  pressing outward. The total pressure inside the tire is
therefore 44.7 lb in-*:

14.7 lb in-*  + 30.0 lb in-*  = 44.7 lb in-*

7. A column of mercury, confined to an inverted tube sealed on one end, adjusts its
height when an opposing column of air presses down on the liquid outside. With a
vacuum space above it, the mercury reaches a level sufficient to balance the pressure
imposed by the air. At 1 atm and OOC,  the increase in height is 760 millimeters.

The height thus attained is orders of magnitude less than the many miles of air
overhead, because liquid mercury (13.6 g cmb3)  is far more dense than the mixed gases
that make up the atmosphere (=  0.0013 g cme3 at STP). See the next exercise.

8. Use the equation

P = pgh

derived in the problem, inserting the following numerical values to solve for the
density p:

P = 1.01325 x lo5 Pa (pressure)

g = 9.81 m s-* (acceleration due to gravity)

h = 0.760 m (change in height)
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The result is 13.6 g cms3:

P

1.01325 x 10’  kg m-’  sm2

= (9.8 1 m se2  x0.760 m)

= 1.36 x lo4 kg mT3 x
3 1OOOg

x - = 13.6 g cme3
kg

Note that the newton and Pascal  are straightfotwardly  expressed in base SI units of mass,
length, and time:

1 N = 1 kg m se2

9. Use the equation

P = pgh

developed in the previous exercise to solve for h, the height of the barometric column:

&-
6%

Expressing p, P, and g in base SI units of mass (kg), length (m), and time (s),

l.OOg  1mL 1 kg
P= - x - x

mL cm3
x ~ = 1.00 x lo3 kg mW3

1 0 0 0  g

P = 1.00 atm x
1.01325~10~  P a  1Nme2  1kgmsT2

X
a t m Pa ’ N

= 1.01325 x 10’  kg m-t se2

g = 9.81 m se2

we have only to convert finally from meters into feet:

h=p= 1.01325 x 10’  kg m-’  sm2 1 0 0  c m lin Ii?
x - = 33.9 fi

Pg (1.00 x lo3 kg me3)(9.81  m s-‘)  ’ 7’ 2.54 cm 12 in
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10. The relevant conversion factors are between pascals  and atmospheres and between
atmospheres and torr:

1 .01325  x 10’  Pa = 1 atm = 760 torr (definition)

760 torr
(a) 0.8 16 atm x = 620. tot-r

atrn

1 atm
(b) 712.3 torr x 760  torr = 0.9372 atm

1 atm 1 . 0 1 3 2 5 x 10’ P a 1kPa
( c ) 7 1 2 . 3 torr x x

x 1000 Pa
=760  torr 94.97 kPa

atm

1.01325x  10’  Pa 1kPa
(d) 24.32 atm x = 2464 kPa

atm ’ 1000 Pa

1 atm
(e) 7659.1 Pa x

1.01325 x lo5 Pa
= 0.075589 atm

1 atm 760 torr
(f) 7659.1 Pa x

1.01325 x 10’  Pa
X = 57.448 torr

a t m

The macroscopic formulation of Boyle ‘s  law is discussed on pages 355-362 of PoC  and
Zustrated  in Examples 1 O-l and I O-2.

11. Boyle’s law states that

PI  VI  = PzV2 (fixed n, 7’)

and hence

v, = v, $
2

We are given the following data:

Pr = 1 atm v, = 1 L

(a) The gas is compressed isothermally into a smaller volume at higher pressure,
P2  = 10 atm. A 1 O-fold increase in pressure causes a 1 O-fold decrease in volume:
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v, =V,$kL
1 atm

x - = 0.1 L
2 10 atm

(b) Similar, with PZ  = 100 atm. A loo-fold  increase in pressure causes a lOO-fold
decrease in volume:

V2=V+Lx
latm

100 atm
= 0.01 L

2

(c) The gas expands into a larger volume when pressure is reduced to P2 = 0.1 atm.
The 1 O-fold decrease in pressure causes a 1 O-fold increase in volume:

V2 =+Lx
1 atm
--1OL

2 0.1 atm -

(d) Similar, with P2 = 0.01 atm. A IOO-fold  decrease in pressure causes a loo-fold
increase in volume:

V2=+lLx
1 atm

0.01 atm
=lOOL

2

12. Boyle’s law applies, since temperature is constant (T = 273 K at STP) and the amount
of gas is constant (n = 1 mol):

PI VI  = P2V2 (fixed n, r)

Given values of three variables,

PI  = 1 atm = 760 torr

P2 = 616 torr

we solve for the fourth:

V, = 22.4 L

v2 = ?

V2  = V, + = 22.4 L x
760 torr

616 torr
= 27.6 L

2

Note the substitution of 760 torr for 1 atm (PI),  necessary for dimensional consistency if
P2 is stated in ton: Equally acceptable would be to use PI  = 1 atm while converting P2
into atmospheres as well:

P2  = 616 torr x
1 atm

760 torr
= 0.8 11 atm
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13. Boyle’s law is again applicable, since both the amount of gas and the temperature
remain unchanged:

Pi VI  = P2  VZ (fixed n, r)

Given the two volumes,

VI = 435.1 mL VZ = 172.9 mL

we solve for the ratio of pressures:

pz VI 435.1 mL
-z-z
4 v2 172.9 mL

= 2.516

The pressure is increased by a factor of approximately 2.5, in inverse proportion to the
fractional change in volume. If we squeeze the gas, it occupies less space.

14. Another application of Boyle’s law, similar to the preceding exercise. Given three of
the pressure-volume variables,

Pi  = 1.0 atm

P2  = 54.6 atm

v, = 1.0 L

v2 = ?

we solve for the fourth:

P,  V,  = P2V2 (fixed n, r>

v, = v, $ = 1.0 L x
1.0 atm

54.6 atm
= 0.018 L

2

See pages 362-365 and Example 1 O-3 in PoC  for relevant material on the Kelvin scale
and Charles k law. Temperature conversions are also mentioned on page 32 and in
Table C-4 of Appendix C @age A64).

15. Use the relationships

1K
T, = -

1°C
( >t,  + 273.15 K

t, = g(TK  - 273.15 K)

to convert between temperature in kelvins (TK)  and temperature in degrees Celsius (tc).
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The two scales differ in their zero points, but the magnitude of a degree is the Sifme  in each.
The number of decimal places is determined by the least significant digit:

(a) tc  = O.O”C: TK  = (0.0 + 273.15) K = 273.2 K

(b) TK  = 0 K: tc = (0 - 273.15)“C  = -273°C

(c) TK  = 3 15.75 K: tc = (315.75 - 273.15)“C  = 42.6O”C

(d) tc  = -123.6”C: TK=  (-123.6 + 273.15) K = 149.6 K

16. The Celsius and Fahrenheit scales differ both in their zero points and in their
definition of a degree:

9 ° F- -
tF  -

5°C
( 1
t,  +32”F

t,  = g(tF  -32’F)

Zero on the Celsius scale (the freezing point of water) corresponds to 32”F,  and the

Celsius degree is larger than the Fahrenheit degree by a factor of g:

(a) rc = 342.45”C:

(b) tF  = 98.6”F:
5

t,  = 9 (98.6 - 32)” C = 37.0” C (body temperature)

(c) tc  = -10.6”C: t,  = ;(-10.6)+32
I

‘F=12.9’F

(d) tF = -4O.O”F: t, =;(-40.0-32)°C=-40.00C

The two scales coincide at -40 degrees.
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17. Charles’s law is valid  at constant pressure and amount:

F = + (fixed n, P)
I 2

Given two temperatures and the initial volume,

v, = 1.00 L T,=(O+2?3.15)K=273K

v2 = ? T2 = (-50 + 273.15) K = 223 K

we solve for the final volume:

v, = v, $ = 1.00 L
223 K

x-=0.817L
I 273 K

A fixed amount of gas shrinks in order to maintain a constant pressure as the temperature
falls.

Remember always to use absolute temperature (K) when solving these gas-law
problems, never Celsius or Fahrenheit temperatures. The conversion from “C to K is
shown explicitly above.

18. A fixed amount of gas (here, one mole) obeys Charles’s law when its volume is
changed under constant pressure:

F = F (fixed n, P)
I 2

Told that the volume doubles,

v2-=
v, 2

and that the constant-pressure process begins at STP,

Pr  = 1 atm T,  = 273 K

we solve for the final temperature. T2:

T,  =+=273Kx2=546K
I

The volume scales in direct proportion to the absolute (Kelvin) temperature.
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19.  The key words “fixed amount” and “constant pressure” tell us, once again, to
implement Charles’s law:

F = F (fixed n, P)
1 2

Converting temperature from “C into K,

v, = ? r,  = (400 + 273.15) K = 673 K

V, = 2.38 L T,  = (500 + 273.15) K = 773 K

we determine the original volume:

VI  = V, $ = 2.38 L
673 K

x ~ = 2.07 L
2 773 K

The gas expands upon heating.

20. Use the same method as in the preceding exercise:

v, v,-=-
r, T,

(fixed n, P)

v , = ? T,  = 400 K

V2 = 344 cm3 T, =300K

400 K
V,  = V2 F = 344 cm3  x ~ = 459 cm3

2 300 K

A fixed amount of gas shrinks in volume as the temperature decreases.

Avogadro s law, implicit in the next group of exercises, states that equal volumes of gases
contain equal numbers ofparticles at constant pressure and temperature (PoC,  pages
3 6 5 - 3 6 6 ) .

All of the individual gas laws-Boyle s law, Charles s law, Avogadro s law-come
together in the ideal gas equation of state, PV = nRT For discussion and sample
problems, see pages 366-369 and also Examples 10-J  through I O-7.
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21. The equation of state

PV=nRT

holds for any gas obeying the ideal gas law, regardless of its particular chemical makeup,
Solving for the number of moles and particles in 22.4 L at STP,

PV (1.00 atmX22.4  L)

n = E = (0.08206 atm L mol-’ K-I)(273  K)

= 1.00 mol x
6.02 x 1O23  particles

m o l
= 6.02 x 1O23  particles

we thereby confirm the computation done on page 367 of PoC: One mole of any ideal
gas occupies 22.4 L at STP.

(a) 22.4 L CO1  = 6.02 x 1O23  molecules CO2

(b) 22.4 L N2  = 6.02 x 1O23  molecules Nz

(c) 22.4 L 02  = 6.02 x 1O23  molecules 02

(d) 22.4 L air = 6.02 x 1O23  molecules (mostly Nz  and 02,  with small amounts of Ar,
CO*,  and other substances)

22. We can always use PV=  nRT  to solve for n, the number of moles:

PV
n=RT

A number of shortcuts, however, can simplify or eliminate most of the explicit numerical
calculations, as demonstrated below.

(a) Since one mole of any ideal gas occupies 22.4 L at STP, we expect to find
6.02 x lo23  atoms of helium under these same conditions. See page 367 of PoC and also
Exercise 2 1.

(b) The pressure is doubled (from I .OO atm to 2.00 atrn), but the temperature remains the
same (273 K):
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PV
n=-=

(2.00 atmX22.4  L)

RT (0.08206 atm L mol-’ K-*)(273  K)

6 02 x 1O23  atoms
=2.OOmolx  ’

m o l
= 1.20 x 1O24  atoms

An alternative method is simply to use the result “1 .OO mol = 22.4 L at STP” and apply
correction factors for nonstandard temperature and pressure.

1. Nonstandard temperature: P = 1 atm, V = 22.4 L, T f 273 K. With pressure
and volume fixed, the number of moles goes up and down in inverse
proportion to the temperature:

nTzpv- = constant
R

(fixed P, V)

At higher temperatures, the gas laws demand that fewer particles occupy the
same volume at the same pressure. At lower temperatures, more particles are
needed to maintain standard pressure and volume.

2. Nonstandard pressure: P +l atm, V = 22.4 L, T = 273 K. At fixed volume and
temperature, the number of moles scales in direct proportion to the pressure:

n V
p = E = constant (fixed V, T)

If P is greater than 1 atm, then a larger quantity of matter (n > 1 mol) must be
compressed into the same 22.4 L at 273 K. If P is less than 1 atm, then n is
less than 1 mol as well.

Thus at 273 K and 2.00 atm-higher than standard pressure-we have only to correct the
standard amount (1 .OO mol) by a pressure ratio greater than 1:

1.00 mol x
2.00 atm

1.00 atm
= 2.00 mol

value  at STP and 22.4 L value at 2.00 atm and 273 K

correction for increased pressure

Either way, we arrive at the same result-but with the shortcut we avoid explicit use of
the universal gas constant, R.
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(c) Similar. If 1 .OO mol occupies 22.4 L at STP (P = 1 .OO atm, T = 273 K),  hen only
0.500 mol can occupy the same 22.4 L at half the pressure (0.500 atm):

n = 0.500 mol = 3.01 x 1O23  atoms

Alternatively, we may solve the equation

PV

n= RT

to get the same result. Substitute the values P = 0.500 atm, V = 22.4 L, T = 273 K, and
R = 0.08206 atm L mol-’  K-‘.

(d) At temperatures higher than standard, the gas would normally expand into a larger
volume. Prevented from doing so, the system must fill the fixed volume of 22.4 L with
less than one mole of substance:

1.00
273 K

m o l x-- -546  K 0 . 5 0 0 m o l = 3 . 0 1 x 1O23 atoms

The correction factor has a value less than 1.

(e) The same method yields n = 2.00 mol when the temperature is cut to half its standard
value. Now the correction factor is greater than 1:

273 K
1.00 m o l x =

136.5 K
2 . 0 0 m o l = 1.20 x 1O24 atoms

23. The same reasoning applies both here and in Exercise 22. Given values of P, V,  and
T,  we can solve the equation

PV=nRT

for the number of moles (n) and thence the number of particles (N):

PV

n= RT
(R = 0.08206 atm L mol-’ K-‘)

N=nN,  =nx
6.02 x 10” particles

m o l
(N,  = Avogadro’ s number)
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Or, if we choose, we may begin with the molar volume

22.4 L 3 1 .OO mol = 6.02 x 1 023 particles at STP (P = 1 .OO atm, T = 273  K)

and apply correction factors to transform the standard state (PI, Vt, TI,  nl) into the actual
state (P2,  V2,  Tz, n2):

P, = 1.00 atm V, = 22.4 L T1=273K  nt=l.OOmol

p2 v2  Tn2  =n, x - x - x -
4 4 T,

Each of the correction factors is derived from the ideal gas law, PV = nRT.  conveniently
expressed in the following form:

WI w2-=-
?r, n2r,

Consider three cases:

1. At constant volume and temperature, the amount of gas is directly proportional
to pressure:

n V
-=
P RT = constant

(fixed V, T)

For pressures P2 greater than 1 .OO atm, the ratio P2/P,  is greater than 1. For
pressures less than 1 .OO atm, the ratio is less than 1.

2. At constant pressure and temperature, the number of moles is directly
proportional to volume:

n P
7 = RT  = constant (fixed P, T)

For volumes VI  greater than 22.4 L, the ratio V2/Vl  is greater than 1. For
volumes less than 22.4 L, the ratio is less than 1.

3. At constant pressure and volume, the amount of gas is inversely proportional to
temperature:

nT=p,v- = constant (fixed P, V)

For temperatures T2  greater than 273 K, the ratio Tl/Tz  is less than 1. For
temperatures less than 273 K, the ratio is greater than 1.
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Note  that the calculations required in this exercise are simpler than in the general case,
since we need only compare a nonstandard volume, VZ,  with the standard molar volume
of 22.4 L. Pressure and temperature remain fixed at their standard values of 1 .OO atm and
273 K,  respectively. The key expression then reduces to

v,
n2 =n, x -

v,

See also Example 1 O-4 in PoC  (beginning on page R10.8).

(a) Knowing that n = 1 .OO  mol and V=  22.4 L at STP (P = 1 .OO atm, T = 273 K), we
have our answer automatically. All ideal gases behave the same way:

1 .OO mol = 6.02 x 1O23 molecules CO

For confirmation, substitute P, V, and T explicitly into the ideal gas equation and solve
for n, the number of moles:

PV- - (1.00 atmX22.4 L)
n = RT - (0.08206 atm L mol-’ K-IX273 K) = Lo0  mol

(b) A volume of 44.8 L contains exactly double the standard amount at STP:

yz 44.8 L
n2 =n, x -

v,
= 1.00 mol x -224L =2.OOmol

2.00 mol = 1.20 x 1O24 molecules CO

(c) If a volume of 22.4 L contains 1 .OO mol at STP, then a volume of 11.2 L contains
exactly half the number of moles under the same conditions:

v, 11.2 L
n2  = n, x - = 1.00 mol x - -

v,
22 4 L  - 0500 mol

0.500 mol = 3.01 x 1O23 molecules CO

24. Plug in the numbers and solve:

R = PV (1.00 atm)(22.4 L)- -
nT - (1.00 mo1)(273  K)

= 0.0821 atm L mol-’ K-’

The result is accurate to three significant figures.
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25. A straightforward application of the unit-factor method.

(a) Convert atmospheres into torr:

0.0821 atm L 760 tot-r
R=

mol K ’ atm
= 62.4 tot-r  L mol-’ K-’

(b) Convert atmospheres into pascals and liters into cubic meters:

0.08206 atm L 1.01325 x lo5 Pa 1000 cm3 3
R= X X

mol  K a t m L

= 8.3 1 Pa m3 mol-’ K-’ (3 sig fig)

Note that we carry along a fourth digit in R before rounding off at the end.

(c) Since the Pascal  is defined as 1 newton per square meter,

1 Pa = 1 N mm2

the factor of pressure x volume in (b) has equivalent units of joules:

Pam3=Nme2m3=Nm=J

The numerical value of R is identical to that calculated just above:

R = 8.31 J mol-*  K-’

26. Given P, T, and n, we use the ideal gas equation of state (PV= nRT)  to solve for V:

nRTv=p

(a) Make sure that the units of P, V,  T, and R are consistent. Here we need to convert
torr into atmospheres and degrees Celsius into kelvins:

latm
P = 589.1 torr x 760  torr = 0.7751 atm

T = (3 12.4 + 273.15) K = 585.6 K

n = 3.28 mol

nRT
y=--=

(3.28 mol)(0.08206  atm L mol-’ K-‘X585.6  K)
= 203 L

P 0.7751 atm
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(b) The pressure of any ideal gas,

remains the same if both temperature and volume are halved:

P2 =
nR(T,  12)  nRT,

=----,p,
v,  I2 v,

27. Use the relationship

-$=$ (fixedn,V)
I 2

while remembering to convert temperatures from degrees Fahrenheit into kelvins:

PI  = 1.00 atm

“F “C K
4 k 4

T, = 400°F = $ (400 - 32)“C  = (204.44 + 273.15) K = 477.6 K

P2  = ? T2 = 800°F = $ (800 - 32)“C  = (426.67 + 273.15) K = 699.8 K

With sufficient  data in hand, we then solve for P2:

P2 = P,  x + = 1.00 atm x
699.8 K

477.6 K
= 1.47 atm

1

Pressure increases m direct proportion to the absolute temperature, not the Celsius
temperature and not the Fahrenheit temperature. Measured in degrees Fahrenheit, Tz  is
twice the value of TI. Measured in kelvins, however-the only temperature scale that is
relevant to these problems-the increase is only 47%.

28. Use the ideal gas law, PV= nRT.

(a) Given the pressure, volume, and temperature,

P = 2.944 atm V = 12.56 L T = 298.2 K

we solve straightforwardly for n:
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PV (2.944 atmX12.56  L)

n = z = (0.08206 atm L mol-’ K-‘x298.2 K)
= 1.511 mol

(b) The temperature of any ideal gas,

is halved if the volume is halved at constant pressure:

P(V,/2)  1 PV,  r,

“=  nR =----2 nR - 2

Exercises 29 through 32 deal with Dalton S law ofpartial pressures, described on
pages 368-369 of PoC.  See also Example 1 O-7, beginning on page RI  0. Il.

29. Before Nz  is added, we know that the vessel contains 1 .OO molO2.  The stated
volume of 22.4 L happens to be the molar volume of any ideal gas at STP, as shown on
page 367 of PoC  and demonstrated further in Exercises 21 through 24.

Subsequent addition of 1 .OO mol N*  therefore gives us a total of 2.00 mol gas
particles at a temperature of 405 K,

ntot  = 2.00 mol T=405  K V = 22.4 L

and we have enough information to solve for the new pressure:

PV = n,,RT

ntot  RT
p=Y=

(2.00 mol)(0.08206  atm L mol-’ K-I)(405  K)
= 2.97 atm

22.4 L

30. For a review of limiting reactant, see pages 69-71 in PoC  and also Example 2-7
(beginning on page R2.15).  Exercises 44 through 47 in Chapter 2 provide additional
practice in determining stoichiometric limits.

(a) First, calculate the molar amounts of CHq and 02:

160.gCH,  x
1 mol CH,

16.043 g CH,
= 9.97 mol CH,

1
4 8 0 . g 0 , mol0,x =

3 1.9988 0,
15.0

g
mol0,
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The available 15.0 moles of oxygen react completely with 7.50 moles of methane,

15.0 mol0,  x
1 mol CH,

2 mol0,
= 7.50 mol CH,

producing 7.50 moles of carbon dioxide and 15.0 moles of water:

CH, + 20, + CO, + 2H,O

t t t t
7.50 mol 15.0 mol 7.50 mol 15.0 mol

A total of 2.47 mol CH4 remains unreacted, left over from the 9.97 mol present at the
start. All of the oxygen is consumed.

Oxygen, which reacts 2: 1 with methane, is therefore the limiting reactant.
Methane is present in excess.

(b) See above: 7.50 mol CO2  and 15.0 mol Hz0 are produced in a stoichiometric reaction
between 7.50 mol CH4 and 15.0 molO2.

(c) Dalton’s law of partial pressures allows us to treat the different molecules as generic
particles. Each mole of particles-regardless of chemical identity-contributes equally to
the total amount:

‘tot  = %Hq + nco* + nH~O

= 2.47 mol + 7.50 mol + 15.0 mol

= 24.97 mol

Given the volume and temperature,

v= 1.00 L T= (125 + 273.15) K = 398 K

we then determine the collective pressure of the gaseous mixture:

ntot  RT
p=-------

(24.97 mol)(0.08206  atm L mol-’ K-I)(398 K)

v - 1 . 0 0  L
=816atm

Note that we carry along one extra digit in n rot before rounding off finally to three
significant figures.
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31.  Don’t be fooled by the equal gram amounts. Calculate, instead, the total number of
moles,

n tot  = nC02  + nH20  + nCHq

= 2 . 0 0 g c o , 1 mol 1 m o lx C O ,

44.010 c o ,
+ 2 . 0 0

g
g H,O x H,O

1 8 . 0 1 5 g H,O

+ 2.00 g CH, x
1 mol CH,

16.043 g CH,

= 0.28113 mol

and then use the ideal gas equation to establish the temperature:

P = 10.0 atm v = 1.00  L ntot = 0.28 113 mol (before round-off)

T= ”- -
(10.0 atmX1.00  L)

ntotR - (0.28 113 mol)(0.08206  atm L mol-’ K-’  )
= 433 K

To avoid round-off error, we retain two nonsignificant digits in the intermediate
value ntot.

32. Another application of Dalton’s law of partial pressures. For additional practice with
mole fractions, see Exercises 25 through 28 in Chapter 9.

(a) From the known total pressure of 1.17 atm,

plot  = PN2  + PHe  = 1.17  atm

we determine the partial pressure of He and the mole fractions of both Nz  and He:

PHe = ‘tot - PN2  = 1.17 atm - 1.00 atm = 0.17 atm

P
x N2 1.00 atm

N2  =P=
= 0.855 (0.8547 before round-off)

tot 1.17 atm

P
&,, =e=l-&2

P
= 0.145 (0.1453 before round-off)

tot



266 Complete Solutions

(b) With values of P,,,  V, and T in hand,

P,,, = 1.17 atm V= l . O O L  T=285K

we first calculate the total number of moles, n tot, by solving the ideal gas equation:

4otv  = ntot  RT

Ptotvntot  = - =
(1.17 atm)(l.OO  L)

RT (0.08206 atm L mol-’ K-I)(285 K) = o’0500  mol

The amount of each component then follows directly from the definition of mole fraction:

nN2 = XN2ntot = 0.8547 x 0.0500 mol = 0.0427 mol N,

n He = XHentot = 0.1453 x 0.0500 mol = 0.0073 mol He

The final results are significant through the fourth decimal place.

Calculations involving molar density and molar mass are described on page 367 of PoC
and demonstrated numerically in Examples 1 O-5 and I O-6 (beginning on page RI  0.10).

33. Given the pressure and temperature,

P = 2.50 atm T = (-10.0 + 273.15) K = 263.2 K

we solve for the molar density (p = n/Q:

PV = nRT

n P 2.50 atm

’ = y = E = (0.08206 atm L mol-’ K-‘X263.2  K)
= 0.116 mol L-r

34. Let mtot  denote the total mass of Cl2 gas (in grams), and let YR denote its molar mass
(70.906 g mol-‘):

Mtot PV
n=-=-

312 RT

Solving for m,,,, we have our answer:

7kPV
(70.906 g Cl, mol-‘) 976 torr x l atm (3.00 L)

760 torr
mtot

1=-=
RT (0.08206 atm L mol-’ K-‘X48.6  + 273.15) K

= 10.3 g Cl,



IO. Macroscopic to Microscopic-Gases and Kinetic Theory 267

35. We write the number of moles as

m PVn=L?L=-
7% RT

where mtot  represents the total mass of the sample (in grams) and % is the molar mass (in
grams per mole). We then rearrange the equation to isolate w:

~ = rn;,“T
-=

(2.14 g)(O.O8206  atm L mol-’ K-I)(273  K) = 32 o g mol-,

(1.00 atm)(l.SO  L) *

The diatomic  gas, X2,  is oxygen: 02,  with a standard molar mass of 32.00 g mol-‘.

36. Use the same method as in the previous exercise to compute the molar mass:

~ = rn;:T- --
(34.84 gxO.08206  atm L mol-’ K-I)(273  K) = 44  1 g mol-l

(1.00 atmXl7.7 L)

Next, determine the empirical formula
Assume 100 grams:

81.7 g C x
1 mol C

12.011 g c

1 mol H
18.3 g H x

1.00794 g H

from the elemental composition by mass.

= 6.80 mol C

= 18.2 mol H (18.16 before roundoff)

Reduced to smallest integers, the molar ratio

C680H18 '6 + Cl.OOH267  + C3Hs

yields an empirical formula of C3Hg and a formula weight of 44.1 g. The molecular
formula is therefore CjHs,  consistent with the molar mass calculated above.

We turn now to the kinetic theory of the ideal gas, covered in Section I O-3 of PoC.  See
Examples 1 O-8 through 1 O-11  for sample problems.

37. The total translational kinetic energy of an ideal gas (excluding vibrational, rotational,
or any other degrees of freedom) is proportional only to temperature and amount:

E, = $RT
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The value per mole is the same for each gas at a given temperature:

Ek(150K)=;nRT=;(1.00 molX8.3  145 x 10e3  kJ  mol-’ K-I)(150 K) = 1.87 kJ

E, (300 K) = 22 nRT  = +(I.00 molX8.3  145 x 1 Om3  kJ  mol-’ K-‘X300 K) = 3.74 kJ

E,(450  K) = SnRT = ~(I.00 molX8.3145  x 10T3  kJ  mol-’ K-*)(450  K) = 5.61 kJ

So long as we maintain that our gas is “ideal,” we treat it as a collection of point particles
with no distinctive chemical identity:

TOTAL TRANSLATIONAL KINETIC ENERGY (kJ mol-‘)

1 5 0 K 300 K 450 K

(a) H2 1 . 8 7 3.74 5 . 6 1
(W He 1 . 8 7 3.74 5 . 6 1
(c) Ne 1.87 3.74 5 . 6 1
W h 1 . 8 7 3.74 5 . 6 1

See pages 369-376 in PoC and also Examples 10-8  and 10-9  (starting on page Rl  0.12).

38. Use the same method as in the previous exercise, this time explicitly calculating the
number of moles (n) corresponding to each mass in grams:

E,  =+nRT

Take, for example, a sample containing 1.008 g HZ:

E,(l50K)=;  l.O08gH,  x
!

1 mol H,

2.016 g H, 1
(8.3145 x 10m3  kJ  mol-’ K-I)(150 K)

= $0.5000 mo1)(8.3145  x low3 kJ  mol-’ K-I)(150  K)

= 0.935 kJ
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Values below are reported to three significant figures:

ToTALTRANSLAT~ONALKINETICENERGY(~.J)

n (mol) 1 5 0 K 300 K 450 K

(4 0.5000 0.935 1 . 8 7 2 . 8 1
(b) 1 .ooo 1 . 8 7 3.74 5 . 6 1
Cc) 2.000 3.74 7 . 4 8 1 1 . 2
(d) 3.000 5 . 6 1 1 1 . 2 1 6 . 8
(e) 4 .000 7.48 1 5 . 0 22.4

39. Take a system of N particles, and express the number of moles as a fraction of
Avogadro’s number, NO:

N
n=

N O

The translational kinetic energy for n moles

E, = +T

then becomes

by which we define the Boltzrnann  constant, kB:

ks+-=
8.314510 J mol-’ K-’

60221367 x 1O23  mol-’
= 1.380658 x 1O-23  J K-’

0 *

The average kinetic energy per particle

( > Ek 3 Nk,T 3
Ek  ---=-- - -k,T

N 2 N -2

is therefore an intensive property, independent of the size of the sample (see PoC,
pages 7-8 and 468-469). Its value depends only on the temperature, not the number
of particles:
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(~(150 K)) = $1.38066~ lo-= J K-‘)(I50  K) = 3.11 x 1O-2’ J

(~(300  K)) = t(1.38066  x lO-U  J K-I)(300  K) = 6.21 x 1O-2’ J

(~(450  K)) = $1.38066 x 1O-23  J *K-I)(450  K) = 9.32 x 1O-2’  J

These energies per particle, $kBT, are all the same at a given temperature, regardless of
the gram amounts involved:

AVERAGE TRANSLATIONAL KINETIC ENERGY PER PARTICLE (J)

n (mol) 150K 300 K 450 K

(4 0.5000 3.11 x 1o-2’ 6.21 x 1O-2’ 9.32 x 1O-2’
W 1 .ooo 3.11 x 1o-2’ 6.21 x 1O-2’ 9.32 x 1O-2’
(4 2.000 3.11 x 1o-2’ 6.21 x 1O-2’ 9.32 x 1O-2’
60 3.000 3.11 x 1o-2’ 6.21 x 1O-2’ 9.32 x 1O-2’
(e) 4.000 3.11 x 1o-2’ 6.21 x 1O-2’ 9.32 x 1O-2’

A similar derivation is provided on pages 379-380 of PoC.

40. See pages 374-378 and Example lo-  10 in PoC for a treatment of root-mean-square
speed. Additional commentary is provided in the solution to Exercise 43.

(a) To compute v,,,,s for HZ, substitute the molar mass

a = 2.016 g mol-’  = 0.002016 kg mol-’

into the defining equation:

Values at the three requested temperatures are calculated on the opposite page:
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~~(150  K) = jjjg)llij=l*36xlo3 ms-’

v,,(300  K) = $;‘“““=lK)=193x10’  ms-’

~~(450  K) =//=2.36xlOs ms-I

(b) The root-mean-square speed is proportional to T In, the square root of the absolute
temperature. It does not vary linearly with T.

41. Use the same general method as in Exercise 37, taking care to convert grams into
moles. As an example, consider the calculation for 19.97 g Ar (one-half mole) at 150 K:

E, = $RT

E,(150K)=;
(

1 mol Ar
19.97 g Ar X

39.948 g ArI ( 8 .3

= 0.935 kJ

145 x 10m3  kJ  mol-’ K-‘)(I50  K

A full set of values is tabulated below. Note that the original mass in (c) should be 79.90 g:

TOTAL TRANSLATIONAL KINETIC ENERGY (kJ)

n (mol) 150K 300 K 450 K

(4 0.500 0.935 1 . 8 7 2 . 8 1
W 1 .ooo 1 . 8 7 3.74 5 . 6 1
w 2.000 3.74 7.48 1 1 . 2
(4 3.000 5 . 6 1 1 1 . 2 1 6 . 8
69 4.000 7 . 4 8 1 5 . 0 22.4

The numbers are the same as for Hz (Exercise 38),  as they would be for the translational
energy of any ideal gas in the same amount. Molecular mass does not enter into the
expression that determines the kinetic energy:

E, = +nRT

Realize, though, that the total energy of Hz-inclusive of rotational and vibrational
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degrees of freedom absent in monatomic systems-is indeed different from the total
energy of argon, but the translational contribution is identical for both gases.

42. The average translational kinetic energy per particle depends only on temperature:

Use the same procedure as in Exercise 39 to obtain the results in the following table:

AVERAGE TRANSLATIONAL KINETIC ENERGY PER PARTICLE (J)

n (mol) 1 5 0 K 300 K 450 K

(a) 0.500 3.11 x 1o-2’ 6.21 x 1O-2’ 9.32 x 1o-2’

(b) 1 .ooo 3.11 x 1o-2’ 6.21 x 1O-2’ 9.32 x 1o-2’

(4 2.000 3.11 x 1o-2’ 6.21 x 1O-2’ 9.32 x 1o-2’

(4 3.000 3.11 x 1W2’ 6.21 x 1O-2’ 9.32 x 1o-2’
(e) 4 .000 3.11 x 1o-2’ 6.21 x 1O-2’ 9.32 x 1o-2’

The values, independent of molecular mass, are the same as for HZ. See also Exercise 41.

43. The formula for root-mean-square speed is

where % is the molar mass (in kg mol-‘), R is the universal gas constant (in J mol-’  K-l),
and T is the absolute temperature (in K).

Recalling that a joule is a unit of work (force x distance),

1 J=lNm=l  kgm2se2

we quickly verify that v,, has the expected units of m s-‘:

Be careful to express the molar mass w in kilograms, thereby matching the base SI unit
implicit in R.

See pages 374-378 in PoC,  as well as Example lo- 10  (beginning on page Rl  0.13).
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(a) To calculate vrmS for Ar, substitute the molar mass

m = 39.948 g mol-’  = 0.039948 kg mol-’

into the defining equation:

V rms =

Values at the three requested temperatures are calculated below:

3 8.3 1 4 5 m* s-* mol-’Vrm,(150 K ) 7 kg K-I)(150 K )=

0.039948 kg mol-’
= 3.06 x lo* m s-’

d

3
v,,(300  K) = (8.3 145 kg m* s-*  mol-’ K-I)(300 K)

0.039948 kg mol-’
= 4.33 x lo2 m s-I

3
v,,(450  K) = (8.3145 kg m* s-* rnol-’  K-‘I45o  K) = 5 30

0.039948 kg mol-’
. x 1o2  m s-I

(b) Argon atoms, more massive than hydrogen molecules, move slower at a given
temperature-although the average kinetic energy is identical for both. The
root-mean-square speeds differ in inverse proportion to the square roots of the
molecular masses:

v,, (Ar)
Vrms(H2)

=/~=~~=O.??i

Endowed with the same average energy at each temperature,

the two particles therefore develop different speeds. The one w’th  a lower mass 1s  able to
translate more of its energy into velocity.

44. Translational kinetic energy is partitioned as &RT  or, equivalently, $NkBT  in each of
the three dimensions. Thus we expect the following relationship to govern a
two-dimensional system:

El;,2~=2x$7RT  =nRT=NkeT
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(a) Two-dimensional translational energy is equal to RT per mole (n = 1):

&*o(150  K)  = (1.00 mo1)(8.3  145 x 10m3 kJ  mol-’  K-‘)(  150 K) = 1.25 kJ

Ek,  &300  K) = (1 .OO mo1)(8.3  145 x 10m3 kJ  mol-’  K-I)(300  K) = 2.49 kJ

&, 2D(450 K) = (1 .OO mo1)(8.3  145 x 10e3  kJ  mol-’  K-*)(450  K) = 3.74 kJ

(b) Two-dimensional translational energy is equal to ksT per atom (N = 1):

( ~‘,&150 K)) = (1.38066 x 1O-23  J K-I)(150  K) = 2.07 x 1O-2’  J

( E~,~~(~OO  K)) = (1.38066 x 1O-23  J K-I)(300  K) = 4.14 x 1O-2’  J

( &k,2D(450  K)) = (1.38066 x 1O-23  J K-I)(450  K) = 6.21 x 1O-2’  J

(c) With only two degrees of translational freedom, we have a different kinetic energy
and consequently a different equation for root-mean-square speed:

E k2D = RT = +(v;,) (per mole)

The two-dimensional values are smaller relative to the three-dimensional values by a
factor of (2/3)“2*

T 6) Vrns.ZD  (m s-'>

1 5 0 2.50 x lo2

3 0 0 3.53 x lo2

450 4.33 x lo2

See Exercise 43.

(d) All values differ to the extent that the total translational energy per mole is RT,
not $RT.
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45. Use the expression for root-mean-square speed,

d 3RT
v,= -

7%

to evaluate each set of conditions. Note that vrmS depends only on the temperature and
molar mass.

(a) Both systems have the same value of I+,,,~, since the same molecule is moving at the
same temperature. The system at higher pressure contains more molecules in the same
volume, but the average speed per particle is unaffected.

(b) Same reasoning as in (a). A change in volume has no effect on I+,,,~,  provided that the
two temperatures are the same.

(c) Argon, less massive than xenon, has the higher root-mean-square speed at any given
temperature.

(d) Krypton at 1000 K has a higher v,, than carbon dioxide at 500 K, but only slightly:

I 1000 K

(ti) \i 83.80  g n-d-’  3.45

vvm~co,)  = pjiK- = 3.37 = l-O2
1 44.01 g mol-*

The difference is approximately 2%.
As temperature goes up, the extra thermal energy allows the heavier Kr atom to

move faster. Krypton at 952 K has the same root-mean-square speed as CO1  at 500 K;
krypton at 1000 K has a modest advantage, despite its higher mass.

46. Graham’s law (PoC,  page 379) asserts that the effusion rate varies inversely with the
square root of molecular mass:

Rate, ~a___- -
Rate* - \i’33tA

(a) Hz,  with half the mass of He, effuses approximately 40% faster:
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(b) CO2 (44.010 g mol-‘)  and C3H8 (44.097 g mol-‘)  have nearly the same masses. Their
rates of effusion differ only negligibly, by less than 0.1%.

(c) N2  has a mass of x 28. CzHb  has a mass of = 30. NZ  effuses approximately 3.5%
faster:

(d) N2  (28.013 g mol-‘)  has virtually the same mass as CO (28.010 g mol-‘). Effusion
rates for the two molecules are effectively identical, the difference amounting to little
more than 1 part in 20,000.

(e) Slightly less massive than molecular nitrogen, HCN effuses at a rate approximately
1.8% higher:

4 7 . See the discussion of thermal energy on pages 379-384 of PoC

(a) Particles moving in three dimensions acquire translational thermal energy equal to
QRT per mole. Equating this quantity with the dissociation energy of HZ,  we obtain a
temperature of approximately 35,000 K:

1 0 0 0  J
+  RT = 436 kJ  mol-’ x -

kJ
= 4.36 x 10’  J mol-’

T = 2(4.36  x lo5 J mol-‘)

3(8.3145  J mol-’ K-‘)
= 3.50 x IO4  K

Another acceptable estimate is to take RT as a rough measure of molar thermal energy, in
recognition of its appearance in the Boltzmann factor, exp(-&/RT).  Doing so, we obtain
a corresponding temperature of over 50,000 K:

4.36 x lo5 J mol-’
T=

8.3 145 J mol-’ K-’
= 5.24 x lo4 K

Hot, either way.

(b) Hz is highly unlikely to dissociate thermally at 273 K, where $RT (equal to
3.40 kJ  mol-‘)  is over two orders of magnitude less than the bond energy.
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48. The Maxwell-Boltunann  distribution for a particle with mass m,

F(v)=4x (&)3’2v2exP(-s)

or, equivalently, for a particle with molar mass x

F(v) = 47t (&)3’2v2exp(-g)

is discussed on pages 3 84-39 1 and R10.5  of PoC,  as well as in Example lo-  11. Each
value F(v) Av gives the probability that a particle will have a speed between v and v + Av,
where Av is infinitesimally small.

The peak of the distribution-the most probable speed, vM~-+ccurs at

whereas the root-mean-square speed occurs 22.5% higher:

Root-mean-square speeds for He (?x  = 4.0026 g mol-‘)  are determined in the same way as
in Exercise 43:

k
3%ns(50  K) = ( 8.3145 kg m2 s-*  mol-’ lc')(50K)

0.0040026 kg mol-’
= 5.58 x lo* m s-’

3 8.3v,,(300K)= ( 1 4 5 kg m2 se2  rnol-’  K-l )(300 K)
0.0040026 kg mol-’

= 1 37 x 1 o3 m s-I

v,,,(600  K)=

See Figure 10.1 for plots of the distribution at these three temperatures.
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C
0 500 loo0 1500 2ooo 2500 3000 3500 4000

" (m/s)
(b)

- 0

Cc)

5 0 0 1000 1500 2ooa 2500 3000 3500 4ooo

5 0 0 1000 1500 2ooo 2500 3000 3500 4000

FlGURE  10.1 Normalized Maxwell-Boltzmann distribution for helium at three temperatures. The
root-mean-square speed is indicated by a dashed vertical line in each panel. (a) 50 K. (b) 300 K.
(c) 600 K.
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49. Use the formula

to calculate the root-mean-square speed at the stated temperature, as worked out explicitly
in Exercise 48. Then study Figure 10.1 to determine where the given values of F(v) lie
relative to the reference value, F(v,,).

(a) The root-mean-square speed for helium is approximately 560 m s-*  at 50 K:

A speed of 500 m s-’ is roughly 10% less than v,~. The corresponding value of F falls
near the peak of the Maxwell-Boltzmann distribution, and therefore 500 m s-’ is a more
probable speed than 50 m s-l-which lies close to the origin. See Figure 10.1(a).

(b) Both the distribution and root-mean-square speed are the same as in part (a). A speed
of 1000 m S-I  falls far to the right of vrms (equal to 560 m s-‘),  making the lower value
(v = 500 m s-‘) more probable. The curve decreases monotonically for speeds greater
than vm.

(c) Directly proportional to fi, the root-mean-square speed increases from
approximately 560 m s-’ to 1370 m s-I when the temperature goes from 50 K to 300 K.
A speed of 1500 m s-‘, about 10% greater than vrms, is more likely than a speed of
50 m s-’ (which falls far to the left of the peak in Figure lo-lb).

(d) The root-mean-square speed is the same as in part (c), and the reasoning is the same
as in part (b): A speed of 1500 m s-’  is only 10% greater than I+,,,~  and hence more
probable than a speed of 2000 m s-‘.

(e) With vrms increasing to 1930 m s-’  at 600 K, a speed of 2000 m s -’ is closer to the
root-mean-square value (and consequently more likely to occur) than a speed of
1000 m s-‘. See Figure 10.1 (c).

(f) Similar to (b) and (d): The lower speed, 2000 m s-‘,  is closer to v,,,,~ and thus more
probable than a speed of 4000 m s-‘.
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50. Start with the Maxwell-Boltunarm  distribution,

F(v) = Kv2 exp
( 1
-&

B

where K is a proportionality constant and m is the mass of a single particle. The ratio
of F(v) at two speeds is therefore

W,)  v2  2
0 [

m
-= - - -
W,) VI

exp ZkBT  vf --v( )I:
Its value is independent of K.

Next, noting that m/kB  is the same ratio as w/R,  we equivalently write

W,)  v2 2
0 [

-7-a-= -F(q) v, exp  -2RT  4 -v( )I:
and express the given speeds in terms of vrms and a scaling factor x:

VI  = hs

V2=wTns

Insertion of these general forms into the equation for F(v2)lF(vi)  yields

- -

By definition, however, we know that

and hence

z=x2exp[-:(x2-l)]

This is the expression we now evaluate by substituting the dimensionless variable x:

V2x=-
V ITllS
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(a) Forx = 0.1:

(b) For x = 0.9:

(c) For x = 2:

(d)  Forx=3:

Note that the ratios are independent of % and T.


