Announcements - 10/9/00

- Note: Additional readings and problems in Chapter 11!
- Quiz Today

■ Exam \# 2: Wed., 10/18, 7:00 pm
-contact me $\mathcal{T H}$ IS WEEK if you need to schedule an alternate time

- Demo today!

Grafam's Law of Effusion

If gas molecules are allowed to enter a vacuum only through a small opening:

The rate at which they effuse through the opening will vary with the square root of the ir molar masses:

$$
\frac{r_{1}}{r_{2}}=\sqrt{\frac{\mathrm{M}_{2}}{\mathrm{M}_{1}}}
$$

So that's why those cheap helium-filled balloons don't last verylong! 2

Diffusion

- Diffusion is the spread of a substance through space (or through another substance)
-gas molecules travel in a straight line until they collide with something, after which, they change direction
-the distance that they travel before they collide is called the mean free path (mfp)
mfp varies with density:
nm@atmpressure

What about individual gas particles?

- We can also express the average kinetic energy per particle in terms of temperature. For 1 mol:

\# particles $\quad \mathcal{N}_{0} \quad \mathcal{N}_{0}$

$$
\begin{aligned}
& \left\langle\varepsilon_{K}\right\rangle=3 / 2 K_{\mathcal{B}} \mathcal{I} \\
& \text { Boltzmann's Constant } \\
& \left(=1.38066 \times 10^{-23} \mathrm{~g} / \mathrm{K}\right)
\end{aligned}
$$

Maxwell-Boltzmann Statistics

- Allows us to characterize the befavior of individual particles by statistical analys is of the aggregate
- The speed distribution for a gas at thermal equilibrium:

$$
\mathcal{F}(v)=\mathcal{K} \mathcal{v}^{2} e^{-m v^{2} / 2 \kappa_{6} \mathcal{T}}
$$

where: $\mathcal{K}=4 \pi\left(m / 2 \pi \kappa_{6} T\right)^{3 / 2}$ - constant at fixed te mp
There are two opposing trends:

$$
\mathcal{F}(v) \propto v^{2}(\text { inc } r) \quad \mathcal{A} \mathcal{N}\left(D \quad \mathcal{D}(v) \propto e^{\cdot v^{2}}(\text { dec } r)\right.
$$

Maxwell-Boltzmann Speed Distribution

Example: Argon
$\mathcal{T}_{1}=273.15 \mathrm{~K}$
$v_{\text {rms }}=413.0 \mathrm{~m} / \mathrm{s}$
$v_{m p}=337.2 \mathrm{~m} / \mathrm{s}$
$\mathcal{T}_{2}=573.15 \mathrm{~K}$
$v_{\text {rms }}=598.2 \mathrm{~m} / \mathrm{s}$
$v_{m p}=488.4 \mathrm{~m} / \mathrm{s}$

Maxwell-Boltzmann: Effect of Gas Composition

- Avg Kinetic Energy is independent of gas composition \rightarrow depends only on temperature
-since the mass of the gas molecules varies with composition, the velocities of the molecules must vary with composition:

$\mathcal{N O N}$-Ideal Gases:
 The Real Tfing

- If agas acts ideally:

$$
\frac{\mathcal{P V}}{\mathcal{R I}}=1 \quad \text { for } 1 \text { molgas }
$$

- A plot of PVVersus \mathcal{P} should yield a straight line RT
at a constant value of 1.00

Let's take a look, shall we?

Real Gas Befiavior

$>\mathcal{N}$ o deviations until $P>20$ atm

- Negative Deviations at intermediate pressures
$>$ Due to lower than ideal volumes
\rightarrow Mole cular attractions
$>$ Positive $\mathcal{D e}$ viations at
Kigh pressures

\mathcal{A} constant temperature $(300 \mathcal{K})$

Effect of Temperature

-negative deviations are more significant at lower temps
-due to decreased molecular motion, allowing more significant intermolecular interactions

