Announcements - 10/9/00

- *Note:* Additional readings and problems in Chapter 11!
- Quiz Today
- **Exam #2:** Wed., 10/18, 7:00 pm -contact me THIS WEEK if you need to schedule an alternate time
- Demo today!

Graham's Law of Effusion

If gas molecules are allowed to enter a vacuum only through a small opening:

The rate at which they effuse through the opening will vary with the square root of their molar masses:

$$\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}$$

So that's why those cheap helium-filled balloons don't last very long! 2

Diffusion

- Diffusion is the spread of a substance through space (or through another substance)
 - -gas molecules travel in a straight line until they collide with something, after which, they *change direction*
 - -the *distance* that they travel before they collide is called the **mean free path** (*mfp*)
 - -mfp varies with density:
 nm @ atm pressure
 cm @ upper atmosphere

3

What about individual gas particles?

■ We can also express the *average kinetic energy* per particle in terms of temperature. For 1 mol:

$$\langle \epsilon_k \rangle = \underline{Total \ Kinetic \ Energy} = \underline{E}_k = \underline{3/2RT}$$
particles $N_0 N_0$

$$\langle \epsilon_{\mathbf{k}} \rangle = 3/2 \, \mathbf{k}_{\mathbf{B}} \mathbf{T}$$

$$= \frac{\text{Boltzmann's Constant}}{(= 1.38066 \times 10^{-23} \, \text{J/K})}$$

4

Maxwell-Boltzmann Statistics

- Allows us to characterize the behavior of individual particles by statistical analysis of the aggregate
- The speed distribution for a gas at thermal equilibrium:

$$F(v) = Kv^2 e^{-mv^2/2k}b^T$$

where: $K = 4\pi (m/2\pi k_b T)^{3/2}$ - constant at fixed temp

There are two opposing trends:

$$F(v) \propto v^2$$
 (incr) AND $F(v) \propto e^{-v^2}$ (decr)

5

Maxwell-Boltzmann Speed Distribution

0.0000E+00

Example: Argon

 $T_1 = 273.15 \text{ K}$

 v_{rms} = 413.0 m/s

 $v_{mp} = 337.2 \text{ m/s}$

 $T_2 = 573.15 \text{ K}$

 $v_{rms} = 598.2 \text{ m/s}$

 $v_{mp} = 488.4 \text{ m/s}$

Speed, m/s

Maxwell-Boltzmann: Effect of Gas Composition

- Avg Kinetic Energy is independent of gas composition ® depends only on temperature
 - -since the $\it mass$ of the gas molecules varies with composition, the $\it velocities$ of the $\it molecules$ must vary with composition:

NON-I deal Gases: The *Real* Thing

■ If a gas acts ideally:

$$\frac{PV}{RT} = 1$$
 for 1 mol gas

 A plot of <u>PV</u> versus P should yield a straight line RT

at a constant value of 1.00

Let's take a look, shall we?

8

Real Gas Behavior

- ➤ No deviations until P>20 atm
- ➤ <u>Negative Deviations</u> at intermediate pressures
 - ➤ Due to lower than ideal volumes
 - ➤ Molecular attractions
- *Positive Deviations* at high pressures
 - ➤ Due to higher than ideal volumes
 - ➤ Molecular repulsions

Effect of Temperature 200 K -negative deviations are more significant 500 K at lower temps 2 PV 1000 K -due to decreased RTmolecular motion, Ideal gas allowing more significant intermolecular interactions 00 300 600 900 P (atm) 10