Announcements - 10/18/00

Constant-Pressure Calorimetry

- So-called "coffee-cup" calorimetry:
\bullet Add reactants to cup
\bullet Me asure resulting temperature
increase (or decrease)
${ }^{\bullet} q_{\text {soln }}=-q_{r \chi n}$
- So: $\Delta \mathcal{H}=-q_{\text {soln }}=-m_{\text {soln }}($ sp heat $) \Delta \mathcal{T}$
- You will do this this week in lab!

$\mathcal{H o w}$ are $\Delta \mathcal{E}$ and $\Delta \mathcal{H}$ related?

- From the definition of Enthalpy:

$$
\Delta \mathcal{H}=\Delta \mathcal{E}+\mathcal{P} \Delta \mathcal{V}
$$

- for an ide algas: $\mathcal{P} \Delta \mathcal{V}=\mathcal{R T} \Delta n$

So:

Enthalpies of Reactions

- Enthalpy (H) is a state function, so all we need to Know are the initial and final values for a reaction:

$$
\Delta \mathcal{H}_{r \chi n}=\mathcal{H}(\text { products })-\mathcal{H}(\text { reactants })
$$

Together with a balanced reaction expression, we have a thermochemical equation:

More on Entfalpy

- Entfalpy is an extensive property
-the magnitude of $\Delta \mathcal{H}$ depends on the quantity of reactant
- $\Delta \mathcal{H}_{\text {forward }}=-\Delta \mathcal{H}_{\text {reverse }}$
- reverse reaction will have same $\Delta \mathcal{H}$, but with the opposite sign

■ Reactions with $\underline{\Delta \mathcal{H} \ll 0}$ often occur spontaneously -6ut not always; there are exceptions (wait until Thermodynamics to resolve this fully!)

Enthalpy of Reaction Calculation Example

- Calculate the $\Delta \mathcal{H}$ for the reaction that occurs when 1.00 g $\mathcal{H}_{2} \mathrm{O}_{2}$ decomposes according to the following reaction:
$\mathcal{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \rightarrow \mathcal{H}_{2} \mathrm{O}(\mathrm{l})+1 / 2 \mathrm{O}_{2}$ (g) $\quad \Delta \mathcal{H}=-98.2 \mathrm{~kJ}$
convert: $g \mathcal{H}_{2} \mathrm{O}_{2} \rightarrow \kappa \mathrm{~g}$
$1.00 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}_{2} \chi \frac{1 \mathrm{~mol} \mathcal{H}_{2} \underline{O}_{2} \underline{2}}{34.01 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}_{2}} \times \frac{-98.2 \mathrm{KI}}{1 \mathrm{~mol} \mathcal{H}_{2} \mathrm{O}_{2}}=$

$$
=\underline{2.89 \mathrm{~kJ}}
$$

$\mathcal{H e s s}$ 'Law

- $\Delta \mathcal{H}$ is a state function so we can use any sequence of reactions (that sum to the desired reaction) to calculate a value of $\Delta \mathcal{H}_{r x n}$:

IF: $\quad \operatorname{Rxn}(1)+\mathcal{R x n}(2)=\operatorname{Rxn}(3)$
Ifen: $\quad \Delta \mathcal{H}_{1}+\Delta \mathcal{H}_{2}=\Delta \mathcal{H}_{3}$

Anexample:
$\underline{\Delta \mathcal{H}}$
$\mathcal{R x n}(1): S n(s)+\mathcal{C l}_{2}(g) \rightarrow \operatorname{SnCl}_{2}(s)-349.8 \mathrm{~kJ}$
$\underline{R x n}(2): \mathrm{SnCl}_{2}(s)+\mathrm{Cl}_{2}(g) \rightarrow \operatorname{SnCl}_{4}(\mathcal{I})-195.4 \mathrm{~kJ}$

Hess's Law: Example

- We can use $\mathcal{H e s s}$'s Law to calculate $\Delta \mathcal{H}$ for reactions without ever actually having to perform the reaction:

Find $\Delta \mathcal{H}$ for the following reaction:

$$
2 \mathcal{N}_{3} \mathcal{H}_{3}(g)+3 \mathcal{N}_{2} O(g) \rightarrow 4 \mathcal{N}_{2}(g)+3 \mathcal{H}_{2} O(l)
$$

What we know:
$\underline{\Delta \mathcal{H}}$
ㅈxn(1): $\quad 4 \mathcal{N H}_{3}(\mathcal{g})+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathcal{N}_{2}(g)+6 \mathcal{H}_{2} \mathrm{O}(\mathrm{l}) \quad-1531 \mathrm{~kJ}$
Rxn(2): $\mathcal{N}_{2} \mathrm{O}(g)+\mathcal{H}_{2}(g) \rightarrow \mathcal{N}_{2}(g)+\mathcal{H}_{2} \mathrm{O}(\mathrm{l}) \quad-367.4 \mathrm{~kJ}$
$\underline{\mathcal{R} x n(3):} \mathcal{H}_{2}(g)+1 / 2 \mathrm{O}_{2} \rightarrow \mathcal{H}_{2} \mathrm{O}(\mathrm{l}) \quad-285.9 \mathrm{~kJ}$

Hess's Law Example: Cont'd

- We need to react only $\mathcal{T W O}$ mol $\mathcal{N} \mathcal{H}_{3}$, so divide rxn(1) 6y 2:
$2 \mathcal{N H}_{3}(g)+3 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathcal{N}_{2}(\mathrm{~g})+3 \mathcal{H}_{2} \mathrm{O}(\mathrm{l})$
- We need to react $\mathcal{T H R E E}$ mol $\mathcal{N}_{2} O$, so multiply rxin(2) 6y 3:

$$
3 \mathcal{N}_{2} \mathrm{O}(g)+3 \mathcal{H}_{2}(g) \rightarrow 3 \mathcal{N}_{2}(g)+3 \mathcal{H}_{2} O(l)
$$

- We need to get rid of the stuff not in the final rxn $\left(\mathcal{H}_{2}, O_{2}\right.$, and excess $\mathcal{H}_{2} O$), so reverse rxn(3) and multiply 643 :
$3 \mathcal{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 3 \mathcal{H}_{2}(\mathrm{~g})+3 / 2 \mathrm{O}_{2}(\mathrm{~g})$
- Add ém up!
$2 \mathcal{N H}_{3}(\mathrm{~g}) \mathrm{D}+3 \mathrm{SO}_{2}(\mathrm{~g})+3 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g})+3 \mathcal{H}_{2}(\mathrm{~g})+3 \mathcal{H}_{2} \mathrm{O}(\mathrm{t}) \rightarrow$

Hess's Law Example: The Tfrilling Conclusion!

- Whatever was done to the reaction equations, we need to do to the $\Delta \mathcal{H}$ values:

$\Delta \mathcal{H}_{1} \div 2=$	$-1531 \div 2=$	-765.5 kJ
$\Delta \mathcal{H}_{2} \frac{\times 3}{}=$	$-367.4 \times 3=$	-1102.2 kJ
$\Delta \mathcal{H}_{3} \underline{\times(-3)}=$	$-285.9 \times(-3)=$	857.7 kJ

$$
\Delta \mathcal{H}_{r x n}=\quad-1010.0 \mathrm{kI}
$$

Enthalpies of Formation

- A consistent way to tabulate $\Delta \mathcal{H}$ values :
- for a defined reaction type (formation from elements)
-for a fixed amount of compound (1 mol)
-under standard conditions ($25^{\circ} \mathrm{C}$, 1 atm)
Called: The Standard Molar Enthalpy of Formation
or

$$
\Delta \mathcal{H}^{\circ}{ }_{f}
$$

Example:

$$
\mathcal{A g}(s)+1 / 2 \mathcal{C l}_{2}(g) \rightarrow \mathcal{A g C l}(s) \quad \Delta \mathcal{H}=-127.0 \mathrm{KJ}
$$

Then: $\quad \Delta \mathcal{H}^{0}{ }_{f}(\operatorname{AgCl}(s))=-127.0 \mathrm{~kJ} / \mathrm{mol}$

Ulsing Entfalpies of Formation

- Hess's Law and tablulated $\Delta \mathcal{H}^{\circ}{ }_{f}$ values are a powerful tool for predicting enthalpy changes for reactions:

$$
\Delta \mathcal{H}^{o}=\Sigma \Delta \mathcal{H}^{o}{ }_{f}(\text { products })-\Sigma \Delta \mathcal{H}^{o}{ }_{f} \text { (reactants) }
$$

Example: The Thermite Reaction

$$
8 \mathcal{A l}(s)+3 \mathcal{F e}_{3} \mathrm{O}_{4}(s) \rightarrow 4 \mathcal{A l}_{2} \mathrm{O}_{3}(s)+9 \mathcal{F e}(s)
$$

We know:

$$
\Delta \mathcal{H}_{f}{ }_{f}\left(\mathcal{F e}_{3} \mathrm{O}_{4}\right)=-1120.9 \mathrm{KJ}
$$

$$
\Delta \mathcal{H}^{0}{ }_{f}\left(\mathcal{A l}_{2} O_{3}\right)=-1669.8 \mathrm{~kg}
$$

So:

$$
\begin{gathered}
\Delta \mathcal{H}^{o}=[4(-1669.8 \mathrm{~kJ} / \mathrm{mol})+9(0)]-[3(-1120.9 \mathrm{~kJ} / \mathrm{mol})+8(0)] \\
\Delta \mathcal{H}^{o}=(-6679.2 \mathrm{~kJ}) \cdot(-3362.7)=-3316.5 \mathrm{~kJ}
\end{gathered}
$$

Demo Example: Burning $\mathfrak{M g}$

- The overall reaction is:

$$
\begin{array}{cl}
2 \mathfrak{M g}(\mathrm{~s})+\underset{2}{\mathrm{CO}_{2}(\mathrm{~s})} \rightarrow 2 \operatorname{MgO}(\mathrm{~s})+\mathrm{C}(\mathrm{~s}) \\
0 ? & -601.70 \mathrm{~kg} / \mathrm{mol}
\end{array}
$$

$\Delta \mathcal{H}^{0}{ }_{f}:$
$\mathcal{H o w}$ do we find $\Delta \mathscr{H}^{\circ}{ }_{f}$ for $\mathrm{SOLID} \mathrm{CO}_{2}$?
Ulse Hess's Law!

We know: $\Delta \mathcal{H}^{0}{ }_{f}$ for $\mathrm{CO}_{2}(\mathrm{~g})=-393.51 \mathrm{~kJ} / \mathrm{mol}$
$\mathcal{B} u t$ how do we deal with phase changes?

Enthalpies of Phase Changes

- There are enthalpy changes associated with physical processes:

$$
\begin{array}{ll}
\mathrm{CO}_{2}(\mathrm{~s}) \rightarrow \mathrm{CO}_{2}(\mathrm{l}) & \Delta \mathcal{H}_{\text {fusion }}=6.01 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{CO}_{2}(\mathrm{l}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) & \Delta \mathcal{H}_{\text {vap }}=44.01 \mathrm{~kJ} / \mathrm{mol} \\
& \\
\mathrm{CO}_{2}(\mathrm{~s}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) & \Delta \mathcal{H}_{\text {sublimation }}=\Delta \mathcal{H}_{\text {fusion }}+\Delta \mathcal{H}_{\text {vap }} \\
& \Delta \mathcal{H}_{\text {sublimation }}=50.02 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

So:

We want:

$$
\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{l}) \quad \Delta \mathcal{H}=-\Delta \mathcal{H}_{\text {sub }}=-50.02 \mathrm{~kJ} / \mathrm{mol}
$$

Putting it all together

■ So, to get $\Delta \mathcal{H}^{o}{ }_{f}$ for $\mathrm{CO}_{2}(\mathcal{g})$:

$$
\begin{array}{ll}
\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) & \Delta \mathcal{H}_{f}=-393.51 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{l}) & \Delta \mathcal{H}=-50.02 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

$\mathfrak{A d d i n g}$ give s:

$$
\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~s}) \quad \Delta \mathcal{H}_{f}{ }_{f}=-443.53 \mathrm{~kJ} / \mathrm{mol}
$$

And, finally:
$2 \mathcal{M g}(s)+\mathrm{CO}_{2}(s) \rightarrow 2 \mathcal{M g O}(s)+C(s)$
$\Delta \mathcal{H}^{0}{ }_{f}: \quad 0.443 .53 \mathrm{~kJ} / \mathrm{mol}-601.70 \mathrm{~kg} / \mathrm{mol} \quad 0$
$\Delta \mathcal{H}^{0}{ }_{\text {rxn }}=2(.601 .70 \mathrm{~kJ} / \mathrm{mol})-(-443.53 \mathrm{~kJ} / \mathrm{mol})=-759.87 \mathrm{~kJ}$

