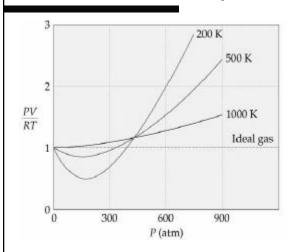
Announcements - 10/11/00

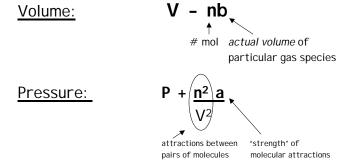

- "Quiz" we will review in a moment
- *Exam #2:* Wed., 10/18, 7:00 pm
 - will cover material through today
 - see the Exam#2 info page for more info
 - extra Problem/Review session:

Sunday 10/15, 4 - 6 pm

- Demo on MONDAY . . . (no class Friday!)
- No Office Hour on Friday additional Office Hour this week on Thursday (2 3 pm)

1

Effect of Temperature



- -negative deviations are more significant at lower temps
- -due to decreased molecular motion, allowing more significant intermolecular interactions

2

van der Waals Equation

■ Corrects the IGL using empirically-corrected pressure and volume terms:

.

van der Waals Equation

Putting it all together:

$$(P + n^2a/V^2)(V - nb) = nRT$$

TABLE 10.3 Van der Waals Constants for Gas Molecules		
Substance	a(L ² -atm/mol ²)	b (L/mol)
He	0.0341	0.02370
Ne	0.211	0.0171
Ar	1.34	0.0322
Kr	2.32	0.0398
Xe	4.19	0.0510
H ₂	0.244	0.0266
N_2	1.39	0.0391
N ₂ O ₂ Cl ₂ H ₂ O	1.36	0.0318
Cl ₂	6.49	0.0562
H ₂ O	5.46	0.0305
CĤ₄	2.25	0.0428
CO ₂	3.59	0.0427
CCI ₄	20.4	0.1383

Thermochemistry

 A part of Thermodynamics dealing with energy changes associated with physical and chemical reactions

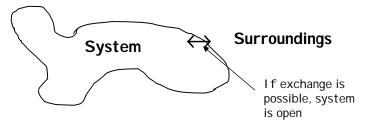
Why do we care?

- -will a reaction proceed spontaneously?
- -if so, to what extent?

It won't tell us:

- -how fast the reaction will occur
- -the mechanism by which the reaction will occur

5


What is Energy?

- Energy is the *capacity to do work or to transfer heat*
 - -Kinetic Energy: energy associated with mass in motion (recall: $E_k = \frac{1}{2}mv^2$)
 - -<u>Potential Energy:</u> energy associated with the *position* of an object relative to other objects (energy that is *stored* can be converted to kinetic energy)

6

The System

■ We must define what we are studying:

System: portion of the universe under study

Surroundings: everything else

7

Energy Transfer

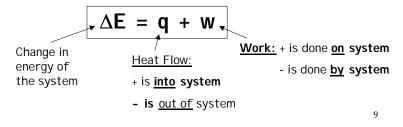
- Energy can be transferred in two different ways:
 - By doing <u>Work</u> (applying a force over a distance)

$$W = F \times d$$

2. ____ - q (results in a change in temperature)

Note: W, q, and E all have the same units (Joule), but:

- W & q depend on path path
- E is independent of path (____ function)


8

First Law of Thermodynamics

- "The total energy of the universe is *constant.*"
- "Energy is neither created or destroyed in a process, only converted to another form."

-Conservation of Energy

■ "You can't win . . . you can only break even."

