Announcements - 11/15/00
■ Exam \# 3: tonight at 7:00 pm

■ \mathfrak{N} o quiz Friday!

Questions?

- How can we relate this molecular orbital model to the bonding and molecular geometries of some real molecules?

Example: $\quad \mathrm{CH}_{4}$

- tetrafiedral structure (109.50 6ond angles) - all four C- \mathcal{H} bonds identic al - all nice ly predicted using US EPR model
*BUT: how do we combine the 2 p orbitals of Carbon with the 1s orbitals of Hydrogen to obtain this structure?

More Questions!

Lookat the structures of some simple fydrocarbons:

tetrafedral

> trigonal planar
line ar

How can this be done witf carbon's $2 s^{2} 2 p^{2}$ config?

Hybrid Orbitals

- We can combine atomic orbital wavefunctions to make a new set of hybrid orbitals that Getter represent the bonding properties observed
- For carbon, in CH_{4}, we need four equivalent orbitals which are oriented towards the corners of a tetrafedron:

$$
\psi_{\text {hybrid }}=\mathcal{C}_{s} \psi_{2 s}+\mathcal{C}_{p} \psi_{2 p}
$$

$\mathcal{N O T E}$: it's really more complicated than this (as we are combining $\mathcal{F O}$ UR orbitals: $2 s$ plus the three $2 p$ orbitals of carbon).

Example

■ Let's lookfirst at a simpler example: $\mathcal{B e} \mathcal{F}_{2}$
$\underline{\mathcal{B e}:} 1 s^{2} 2 s^{2} \leftarrow$ filled orbitals, no e to share
F: $\quad 1 s^{2} 2 s^{2} 2 p^{5} \quad \leftarrow$ has e-in a $2 p$ orbital to share
Solution: put the 2 Be valence e^{-}in new orbitals (unpaired)
$\mathcal{H o w}$? First, promote $1 e$ to a 2 porbital:

$$
2 s^{2} \rightarrow 2 s^{1} 2 p^{1}
$$

Then, mix and combine the $2 s$ and $2 p$ orbitals, to make two $\mathfrak{N E E W}$ equivalent orbitals:

$$
2 s^{1} 2 p^{1} \rightarrow \uparrow \uparrow
$$

sp fybrid orbitals 5

sp $\mathcal{H y b r i d}$ Orbitals

- This is what they looklike:

\mathcal{N} ow, $\mathcal{B e}$ has unpaired electrons to share with \mathcal{F} :

sp $p^{2} \mathcal{H y b r i d}$ Orbitals

- If we need three equivalent orbitals, we can mix the s-orbital with two p-orbitals:
Example:

$$
\mathcal{B} \mathcal{F}_{3}
$$

$\underline{\mathcal{B}}: 1 s^{2} 2 s^{2} 2 p^{1}$
promote \downarrow

$$
1 s^{2} 2 s^{1} 2 p^{2}
$$

hybridize \downarrow

sp² hybrid orbitals shown together (largen lobes only) (large lobes only)

$$
1 s^{2}\left(s p^{2}\right)^{3}
$$

Two porbisals

sp $p^{3} \mathcal{H y b r i d}$ Orbitals

- If we need four equivalent orbitals, we can mix the s. orbital with all three p-orbitals:

Example:

$$
\begin{gathered}
C \mathcal{H}_{4} \\
\text { C: } 1 s^{2} 2 s^{2} 2 p^{2} \\
\downarrow \text { fybridize } \\
1 s^{2}\left(s p^{3}\right)^{4}
\end{gathered}
$$

How do we know which
hybrid orbitals to use?

- Three step process:

1. Draw the Le wis structure
2. Determine the electron-domain geometry (VS ER)
3. Select the hybrid orbitals needed to obtain the determined geometry

Hybrid Orbitals and Elea ctron-Domain Geometry

Geometrical Arrangements Characteristic of Hybrid Orbital Sets

What about "Expanded Octets"?

- Need to include some of the d-orbitals in our Gybridization scheme:

$$
\begin{aligned}
s+p p p+d= & \mathcal{F I} \mathcal{V} \mathcal{E} \frac{s p^{3} d}{} \text { hybrid orbitals } \\
& \text { in a trigonal Gipyramidal } \\
& \text { orientation } \\
s+p p p+d d= & S I X \frac{s^{3} d^{2}}{} \text { hybrid orbitals } \\
& \text { in an octahedral orientation }
\end{aligned}
$$

So that's why \mathcal{P} and S can accommodate "expanded octets" 6 ut \mathcal{N} and O cannot . . . there are no " $2 d$ " orbitals!

More $\mathcal{H y b r i d}$ Orbitals and Electron-Domain Geometry

Geometrical Arrangements Characteristic of Hybrid Orbital Sets			
Atomic Orbital Set Hybrid Orbital Set Geometry Examples			

sppppd
Five $s p^{3} d$

$\mathrm{PF}_{5}, \mathrm{SF}_{4}, \mathrm{BrF}_{3}, \mathrm{SbCl}_{5}^{2}$

Ethylene $\left(\mathcal{C}_{2} \mathcal{H}_{4}\right)$ Orbitals

Carbon: sp ${ }^{2}$ hybridized (trigonal planar)

