

2nd Period Diatomics: σ first							
		0,	F ₂	Ne ₂			
O ₂ also has <u>unpaired</u> <u>electrons</u> so it must be paramagnetic	σ_{2p}^{*} π_{2p}^{*} π_{2p} σ_{2p} σ_{2s}^{*} σ_{2s}^{*}						

Configurations and Bond Orders: 2nd Period Diatomics						
Specie	es <u>Config.</u>	B.O.	Energy	<u>Length</u>		
Li ₂	$(\sigma_{2s})^2$	1	105 kJ/mol	2.67 Å		
Be ₂	$(\sigma_{2s})^2(\sigma_{2s}^{*})^2$	0	9 kJ/mol	2.45 Å		
B_2	$(\sigma_{2s})^2(\sigma_{2s}^*)^2(\pi_{2p})^2$	1	289 kJ/mol	1.59 Å		
C ₂	$(\sigma_{2s})^2(\sigma_{2s}^*)^2(\pi_{2p})^4$	2	599 kJ/mol	1.24 Å		
N_2	$(\sigma_{2s})^2(\sigma_{2s}^*)^2(\pi_{2p})^4(\sigma_{2p})^2$	3	942 kJ/mol	1.10 Å		
O ₂	$(\sigma_{2s})^2(\sigma_{2s}^*)^2(\sigma_{2p})^2(\pi_{2p})^4(\pi_{2p}^*)^2$	2	494 kJ/mol	1.21 Å		
F_2	$(\sigma_{2s})^2(\sigma_{2s}^*)^2(\sigma_{2p})^2(\pi_{2p})^4(\pi_{2p}^*)^4$	1	154 kJ/mol	1.41 Å		
				6		

Heteronuclear Diatomics

- Different atoms = different atomic orbital energies
 - So, when combining *atomic* orbitals, we don't always combine *like* orbitals
 - And, if we do combine *like* orbitals (e.g., 1s and 1s), they are not necessarily at the same energy, so they combine *unequally*
 - RESULT: asymmetry
 - Unequal distribution of electron density between the two atoms
 - Resulting *molecular orbitals* are not symmetrical
 - \bullet Bond is *polar* and has a *dipole moment* (μ)

7