
Announcements - 12/4/00

- Final Exam: Monday, 12/11, 8:30 am (new time!)
 -I nfo page is now online!
- EXTRA Review/Problem Sessions
 - -Thursday (12/7): noon 2 pm, **B104** (new room!)
 - -Sunday (12/10): 4:15 6:00 pm, B112
- Quiz and Exam#3 Addendum Results
 - -both handed back after class

Overview of IM-Forces

Some Properties of Liquids

Viscosity

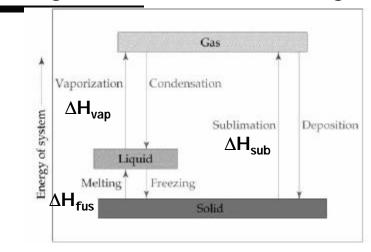
- -characterizes a liquid's resistance to flow
- -varies with the degree of intermolecular attraction

■ Surface Tension

- -molecules on the surface of a bulk liquid experience intermolecular attraction *only* from molecules in the *bulk solution* below the surface
- -so, *surface molecules* are more **tightly packed** than molecules in the bulk solution

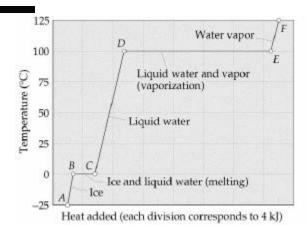
Adhesive and Cohesive Forces

- Attraction of molecules to a surface is due to adhesive forces
- Attraction of molecules to each other is due to cohesive forces
- **Examples:**


-<u>Meniscus</u>: adhesive > cohesive (water)

cohesive > adhesive (mercury)

-<u>Capillary Action:</u> In a small-diameter tube, the adhesive force is sufficient to increase the surface area of the liquid, drawing the bulk liquid up into the tube.


5

Energetics of Phase Changes

Heating Curves

How does the temperature of a system vary as a function of added energy?

7

Vapor Pressure

■ If we put a liquid in a container (and V_{container}>V_{liquid} and T<T_b): **some of the liquid will vaporize**

Why?

- ■If molecules on the *surface* have sufficient <u>Kinetic Energy</u>, they can overcome <u>intermolecular attraction</u> and escape to the gas phase
- ■The reverse process can happen too!
- ■Process reaches a *steady state condition* (equilibrium):

$$X(I)$$
 $X(g)$ amt in gas phase = vapor pressure