## Announcements - 12/4/00

- Final Exam: Monday, 12/11, 8:30 am (ne w time!) -Info page is now online!
- EXTRA Revie w/Problem Sessions
- Thursday (12/7): noon-2 pm, $\boldsymbol{B 1 0 4}$ (new room!) $-S$ unday (12/10): 4:15-6:00 pm, $\mathcal{B} 112$
- Quiz and Exam\# 3 Addendum Results - both fanded back after class


## Exam \#3 Results (revised)

OLD Average: 109/150
(73\%)
$O \mathcal{L D}$ Range:
71-140
$\frac{\text { New Average: }}{114 / 150}$
(76\%)
New Range:
71-150



## Overview of IM-Forces


tui der Waik fivers

## Some Properties of Liquids

- Viscosity
-characterizes a liquid's resistance to flow
-varies with the degree of intermolecular attraction
- Surface Tension
-molecules on the surface of a bulk liquid experience intermolecular attraction only from molecules in the bulk solution below the surface
-so, surface molecules are more tightly packed than molecules in the bulk solution


## Adhesive and Cohesive Forces

- Attraction of molecules to a surface is due to adhesive forces
- Attraction of molecules to eachother is due to cohesive forces
- Examples:
- Meniscus: $\quad$ adfesive >cofesive (water)
cofesive >adfesive (mercury)
- Capillary Action: In a small-diame ter tube, the adfesive force is sufficient to increase the surface are a of the liquid, drawing the bulk liquid up into the tube.

Energetics of Pfase Changes


## He ating Curves

- Howdoes the temperature of a system vary as a function of added energy?



## Vapor Pressure

- If we put a liquid in a container (and $\mathcal{V}_{\text {container }}>V_{\text {liquid }}$ and $\mathcal{T}<\mathcal{I}_{6}$ ): some of the liquid will vaporize

Why?
■If molecules on the surface have sufficient Kine tic Energu, they can overcome intermolecular attraction and escape to the gas phase
-The reverse process can happen too!
-Trocess reackes a steady state condition (equilibrium):


