

Boiling Point Trends

- The enthalpy change associated with vaporization is due to the *disruption* of these intermolecular forces
- The magnitude of ΔH^o_{vap} is reflected in the *boiling* point temperature (T_b) for a compound
- For *polar* molecules:

Substance	Molecular Weight (amu)	Dipole Moment, M (D)	Boiling Point (K)
Propane, CH ₃ CH ₂ CH ₂	44	0.1	231
Dimethyl ether, CH2OCH2	46	1.3	248
Methyl chloride, CH ₂ Cl	50	1.9	249
Acetaldehyde, CH2CHO	44	2.7	294
Acetonitrile, CH3CN	41	3.9	355

Structure of Water

 Each oxygen can accommodate interactions with *four* hydrogen atoms (2 bonding, 2 H-bonding)

-gives a *hexagonal structure* in solid phase

-more open space than liquid phase, so solid water is *less dense* than liquid water

9