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Balmer and the Hydrogen
Spectrum

m 1885: Johann Balmer, a Swiss schoolteacher,
empirically deduced a formula which predicted the
wavelengths of emission for Hydrogen:

| nA)=36456 x _ n2 | forn=3,4,5 6
n2 -4

*Predicts the wavelengths of the 4 visible emission
lines from Hydrogen (which are called the Balmer Series)

eImplies that there is some underlying order in the
atom that results in this deceptively simple equation.




The Bohr Atom

m 1913: Niels Bohr uses quantum theory to explain the origin of the
line spectrum of hydrogen

The electron in a hydrogen atom can exist only in discrete orbits
The orbits are circular paths about the nucleus at varying radii
Each orbit corresponds to a particular energy

Orbit energies increase with increasing radii

The lowest energy orbit is called the ground state
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After absorbing energy, the e- jumps to a higher energy orbit (an
excited state)

7. When the e- drops down to a lower energy orbit, the energy lost can
be given off as a quantum of light

8. The energy of the photon emitted is equal to the difference in
energies of the two orbits involved

Mohr Bohr

m Mathematically, Bohr equated the two forces
acting on the orbiting electron:

coulombic attraction = centrifugal accelleration
-(Z2/4pe,)(€2/r?) = m(v3/r)

m Rearranging and making the wild assumption:
mvr = n(h/2p)

m e angular momentum can only have certain quantified
values in whole multiples of h/2p




Hydrogen Energy Levels

m Based on this model, Bohr arrived at a simple
equation to calculate the electron energy levels in
hydrogen:

En = —RH(1/n2) forn=1,2,3,4, . ...

Where:
Ry =2.179 x 108 Joules (the Rydberg constant)

n is the Principal Quantum Number

Radii can be calculated, too:

r, = n2a,| (a,=0529 A)

Transitions Between
Energy Levels

m Now, the energy change associated with a
transition between electron energy levels can be
guantified:

DE = Efinal = Einitiar = hN

hn=-R, - Ry
2 2
N2 n?;
Collecting terms:

n = (Ry/h) (1/n2 - 1/n?2)




Bohr versus Balmer

m With some rearranging, the Balmer equation looks
like this:

n=3.29 x 10 s1 (1/22 - 1/n?)

-This is the equation we just derived, but with n,
fixed at a value of 2

-So, the Bohr model also accurately predicts the
frequencies of the Balmer Series emission lines

-BUT, it also predicts other emission lines (for ng =
1, 3,4, etc.)

Hydrogen's Energy Level
Diagram

When n; = 2: Balmer Series

-visible emission
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Sample Calculation

m Calculate the wavelength at which the least
energetic emission spectral line of the Lyman
Series (ng = 1) is observed.

Lowest energy transition will be 2® 1:

DE = (Ry) (1722 - 1/1?)
DE = (2.179 x 1018 J)(1/4 - 1)
DE =-1.63425x 1018 J (energy lost by atom)
Converting to wavelength:
| =hc/DE
= (6.626 x 10-34 J-s)(2.9979 x 108 m/s)/(1.63425 x 10-18 J)
=1.215486 x 100" m=121.549 nm ® 121.5 nm (vac UV)

Wave Properties of Matter

m de Broglie: “If EMR waves can act like particles,
why not treat matter like a wave?”

Based on his hypothesis:

Characteristic //VI - h@

— Momentum of

wavelength of object
the object
RESULT: -macroscopic things have wavelengths that are

incredibly tiny (10-3° m or so)

-sub-atomic sized things have wavelengths that are

of the same order as their physical size (A for an e-)!
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The Uncertainty Principle

m German physicist Werner Heisenberg:

There are limits to which we can know
both the momentum and the location
of ANY object.

Quantitatively: (Dp)(Dx) 3 h/4p

-so, the better we know the position of an object, the worse
we know the velocity (p = mv) of the object

-not an issue in the macroscopic world, but the limitation is
profound for objects like electrons!
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Quantum Mechanics

m 1926: Erwin Schrédinger describes z
electrons in an atom as having both wave
and particle properties:

The Schrédinger Wave Eguation! I

Results:

m Solutions to the wave equation are
called: wave functions (y)

= For hydrogen, get the same electron
energies as Bohr did
Lowest energy

m The square of the wave function (y 2) :
gives a probability density for an orbital for the
electron in a specified energy state hydrogen atom

m The probability densities define what
are called orbitals
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Orbitals and
Quantum Numbers

| Each solution to the wave equation can be uniquely
specified by three quantum numbers:

1. The Principal Quantum Number (n)
-can have integer values (1, 2, 3, 4, etc.)
-corresponds to the principal energy level
-same as the quantum number in Bohr's model
-defines the electron shell

2. The Azimuthal Quantum Number (1)
-can have integer values from O0_to n-1 for each value of n
-defines the orbital shape

-value of | determines the letter used to specify the orbital
shape (I=0,1,2,3® s, p, d, T orbitals)

-defines the subshell
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More QN and Orbitals

3. The Magnetic Quantum Number (m,)
-can have integer values from | ® -l
-describes the orientation of the orbital in space

So, some examples:
n=1: only one value of | possible (0) 1s orbital
only one value of m, possible (0)

n=2: I=0,1 (s and p orbitals)
Forl=1: m=10,-1(2p,, 2p,, 2p, orbitals)

n=3: 1=0,1, 2(s, pand d orbitals)
Forl=2:m=21,0,-1, -2 (five 3d orbitals)
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Ammonia Fountain Demo

m The reaction:
NH3(g) ® NH3(aq)

-46.11 kJ/mol -80.20 kJ/mol

DH = (-80.20 kJ/mol) - (-46.11 k3/mol) = -34.18 KJ

n = PV/RT = (1.0 atm)(2.0 L)/(0.08206)(298.15 K) = 8.17 X 10-2 mol

PV work = DnRT = 200 J
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More QN and Orbitals

3. The Magnetic Quantum Number (m,)
-can have integer values from | ® -l
-describes the orientation of the orbital in space

So, some examples:
n=1: only one value of | possible (0) 1s orbital
only one value of m, possible (0)

n=2: I=0,1 (s and p orbitals)
Forl=1: m=10,-1(2p,, 2p,, 2p, orbitals)

n=3: 1=0,1, 2(s, pand d orbitals)
Forl=2:m=21,0,-1, -2 (five 3d orbitals)
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For Hydrogen:

-energies vary with n

-same result as with Bohr

E, = —(em, e4mg)£ = iﬂz_z

(8e,h?)n? n2

-also applies to other one-
electron systems

Ersergy

Orbital Energies
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m  All s-orbitals are
spherical but have
different radial
probability

£l

=13

Fis

Orbital Shapes: s-orbitals

]

w=3:0=0

distributions:

*S-orbitals have n-1
radial nodes

*As n increases, so
does the orbital size

—
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Orbital Shapes: p-orbitals

N
N
N

p-orbitals are “dumbell” shaped

Subscripts indicate primary orientation axis

Nodal plane at nucleus

As n increases, the size of the p-orbitals increases
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Orbital Shapes: d-orbitals

> Three “4-leaf

clover” shapes in - | [

three planes (xy, __ e

Xz, yz) oriented - ' o y

between the axes . ¥ o . P .
II- Ir'_' .rl'i

> One “4-leaf
clover” shape in xy

plane oriented | 'y
along the axes - X g

> One dumbell shape . - W‘
L}

with a doughnut in ¥ |
Xy plane

I'm not making this up . . . really!
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