Prototypical Reactions

Chemistry 35
Fall 2000

Solution Concentrations

- We need to be able to quantify amounts of compounds in solutions:

1. Mass Percent

Mass Percent $=\underline{\text { Solute Mass }} \chi 100$
Solution Mass
Ulsed, more typically, for very difute solutions:

$$
\text { ppm }=\frac{\text { Solute } \operatorname{Mass}}{\text { Solution Mass }} \times 10^{6} \quad \text { Trace }
$$

Concentrations: Moles

- Since reactionchemistry is quantified using moles, these are more useful:

2. Mole Fraction $(X)=\underline{\text { molsolute }}$ Totalmol
3. $\boldsymbol{M o l a r i t y}(\mathcal{M})=$ mol solute Liters Solution
4. Molality $^{(m)}=\underline{\text { mol solute }}$

$$
\overline{\mathrm{kg} \text { solve } \mathrm{nt}}
$$

-temp independent

Molarity

- Typicalconcentrations:
-us ually won't see much be low about $10^{-2} \mathfrak{M}$
What is the molarity of conc. $\mathcal{H}_{2} \mathrm{SO}_{4}$?
onthe bottle: $94.0 \% \mathcal{H}_{2} \mathrm{SO}_{4}$ - mass \%
$1.831 \mathrm{~g} / \mathrm{mL}$ - density
A conversion: mass $\% \rightarrow$ molarity
$\frac{94.0 \mathrm{~g} \mathcal{H}_{2} \mathrm{SO}_{2}}{100.0 \mathrm{~g} \mathrm{soln}} \times \frac{1 \mathrm{~mol} \mathcal{H}_{2} \mathrm{SO}^{2}}{98.08 \mathrm{~g} \mathcal{H}_{2} \mathrm{~S}} \times \frac{1.831 \mathrm{~g} \mathrm{soln}}{\mathrm{mLsoln}} \times \frac{1000 \mathrm{mLsoln}}{1 \mathrm{Lsoln}}=$
$=17.54833 \mathrm{~mol}_{H_{2}} \mathrm{SO}_{4} / \mathrm{L}$ soln
$=\underline{17.5 \mathrm{M} \mathrm{H}_{2} \underline{S O}_{4}}$

Molarity of Water

- In aque ous solutions, the figfuest concentration is the molarity of pure water:
$\mathcal{H o w}$ many mol $\mathcal{H}_{2} O$ per Liter?
$1.000 \mathcal{L}_{2} \mathrm{O} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}} \times \frac{1.00 \mathrm{~g}^{2} \mathcal{H}_{2} \mathrm{O}}{1 \mathrm{~mL}} \times \frac{1 \mathrm{~mol} \mathcal{H}_{2} O}{18.0148 \mathrm{O} \mathcal{H}_{2} \mathrm{O}}=$

$$
=55.50991 \mathrm{~mol} \mathcal{H}_{2} \mathrm{O}
$$

$\mathcal{S o}: \underline{55.5 \mathrm{~mol} \mathcal{H}_{2} \underline{O}=55.5 \mathcal{M} \mathcal{H}_{2} \underline{O}}$ $1.000 \mathcal{L} \mathcal{H}_{2} \mathrm{O}$

Difutions

- mol solute remains unchanged during dilution:
\# mol solute (initial) $=$ \# mol solute (final) concentrated difuted

$$
\mathcal{M}_{1} V_{1}=\mathcal{M}_{2} V_{2}
$$

Example: Howmany mLconc. $\mathcal{H}_{2} S O_{4}$ must be difuted to make 500.mL of $2.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$?

$$
\begin{gathered}
17.54844 \mathcal{M}\left(\mathcal{V}_{1}\right)=2.0 \mathcal{M}(500 . \mathrm{mL}) \\
\mathcal{V}_{1}=56.985 \mathrm{~mL} \\
-\operatorname{Add} 57 . \mathrm{mL} \text { conc. } \mathcal{H}_{2} S O_{4} \text { to water and 6ring up to } 500 . \mathrm{mL}
\end{gathered}
$$

Reactions in Aque ous Solution

- Reactions in water are especially of interest (for obvious reasons), so let'slook at:
- Properties of $\mathcal{A q u e o u s ~ S o l u t i o n s ~}$
- Acid/Base Reactions in Water
- Solubility of Compounds in Water
- Oxidation/Reduction (Redox) Reactions

Properties of Aque ous S olns

- Water is a Polar molecule:

-negatively charged oxygen will attract positive ions in solution
- positively charged fydrogens will attract negative ions in solution

Electrolytes

Ionic compounds break up into ions in aqueous solution and are called electrolytes.

Examples:

- NaCl - strong electrolyte (dissolves completely)
- $\mathcal{H C l}$ - strong electrolyte (dissolves completely)
- $\mathscr{H C}_{2} \mathcal{H}_{3} \mathrm{O}_{2}$ - weak electrolyte (partially dissolves)
- Molecular compounds do not ionize when they dissolve in water and are called nonelectrolytes.

Acid/Base Reactions

Most common definition:
Bronsted-Lowry

Acid: proton donor
Base: proton acceptor

$$
\underset{\text { Acid }}{\mathcal{H A}}+\underset{\text { Base }}{\mathcal{B O} \mathcal{H}} \rightarrow \underset{\text { Salt }}{\mathcal{B A}}+\underset{\text { Water }}{\mathcal{H}_{2} O}
$$

-an example of a double displacement reaction (metathesis)

Acid/Base Reactions

- Most common definition:
Bronsted-Lowry

Acid: proton donor
Base: proton acceptor

$$
\underset{\text { Acid }}{\mathcal{H A}}+\underset{\text { Base }}{\mathcal{B O} \mathcal{H}} \rightarrow \underset{\text { Salt }}{\mathcal{B A}}+\underset{\text { Water }}{\mathcal{H}_{2} O}
$$

- an example of a double displacement reaction(metathesis)

Bronsted-Lowry in Water:

Arrfenius Acids and Bases

- In aque ous solution, we can use the

Arrfenius definitions of acids and bases:

Acid: substance yielding \mathcal{H}^{+}in water Base: substance yielding $O \mathcal{H}$ in water

$$
\begin{aligned}
& \mathcal{H} \mathcal{A} \rightarrow \mathcal{H}^{+}+\mathcal{A} \\
& \mathcal{B O} \mathcal{H} \rightarrow \mathcal{B}^{+}+O \mathcal{H}
\end{aligned}
$$

More $\mathcal{B}-\mathcal{L} \mathcal{A c i d} / \mathcal{B a s e}$

- Bronsted-Lowry does not require reaction to be in aqueous solution:

$$
\mathcal{H} \mathcal{A}+\mathcal{B} \rightarrow \mathcal{A}^{-}+\mathcal{B H}^{+}
$$

acid Gase conjugate base conjugate acid

Example:

$$
\mathcal{H C l}(g)+\mathcal{N} \mathcal{H}_{3}(g) \rightarrow \mathcal{N} \mathcal{H}_{4} \mathcal{C l}(s)
$$

Le wis Acids and Bases

- We can make this concept broader by defining acids and bases a bit differently:

Le wis The ory
Acid: electron pair acceptor
Base: electron pair donor
\mathcal{F} its with $\mathcal{B r o n s t e d - L o w r y ~ d e f i n i t i o n : ~}$
$\mathcal{H}^{+}+: O-\mathcal{H} \rightarrow \mathcal{H}: O-\mathcal{H}$
e pair acceptor e pair donor

$$
\mathcal{H C l}+: \mathcal{N H}_{3} \rightarrow \mathrm{Cl}-\mathcal{H}: \mathcal{N H}_{3}
$$

More Le wis Theory

- MORE reactions can be understood as acid/base reactions:

$$
\mathcal{B F}_{3}+\mathcal{N H}_{3} \rightarrow \mathcal{B F}_{3} \mathcal{N H}_{3} \quad \frac{\mathfrak{N O T E}:}{\mathcal{N}\left(\mathcal{H}^{+}\right.}
$$

Oxidation/Reduction Reactions

- Reactions in which electrons are transferred individually (not as pairs):

Oxidation: $\quad \mathcal{M} \rightarrow \mathcal{M}^{+}+e^{-} \quad$ Loses electron
Reduction: $\quad X+e \rightarrow X . \quad$ gains electron
Net Reaction: $\mathcal{M}+X \rightarrow \mathcal{M} X \quad$ Galanced \# of e xfer'd

Example:

$$
2 \mathfrak{N a}+\mathrm{Cl}_{2} \rightarrow 2 \mathcal{N a C l}
$$

$\mathcal{N a}$ is oxidized to $\mathcal{N} a^{+}$(gives up an e to (l) Cl is reduced to CF (takes e from $\mathcal{N}(a)$

O xidation S tate s

- We can assign a charge to atoms in a compound based on the ir propensity for donating or accepting valence electrons:

$$
\text { O } X I \mathcal{D A} I O \mathcal{N} \mathfrak{N} \mathcal{U} \mathcal{M B E R}
$$

Examples: $\mathfrak{N a C l} \cdot \mathcal{N a}->+1 ; \mathrm{Cl} \cdot>-1$ $\mathcal{K}_{2} \mathrm{O}-\mathcal{K}->+1 ; O->-2$

- these assignments do not necessarily reflect the actual distribution of electrons in a compound (they are just a way to keep track of the valence e(ectrons)

Assigning O xidation \mathcal{N} Nmbers

- Some rules:
- Sum of oxidation \# = overalcharge
- Group $1, \quad$ II: always $+1,+2$ (ionic cmpds)
- Group VII: F always -1, others of ten-1; could be +in cmpds with O or other Group VII elements
- Hydrogen: always +1 , except when with Group I, II (then it's - 1; hydride)
- Oxygen: always - 2, except with \mathcal{F}, fydrogen or Group I, II, or with itself (see exceptions in 6ook

Oxidation \#: examples

■ SrBr_{2} : group II, group VI I +2 -1

■ $Z n(O \mathcal{H})_{4}{ }^{2 \cdot}: O \mathcal{H}$ is -1,-2 charge for cmpd $\begin{array}{lll}+2 & -2 & \text { +1 }\end{array}$

- $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}:-2=7(-2)+2(x)$
$+6 \quad-2$
$x=+6$
- $\mathrm{MnO}_{4}:-1=4(-2)+x$

$$
+7 \quad-2 \quad x=+7
$$

Formal Cfiarges

- Another way of looking at charge distribution in compounds:
- whereas oxidation numbers assume complete transfer electrons between atoms (ionic model)
-formalcharges assumes complete sharing of electrons between atoms (covalent model)

Formal Charge $=$

$$
\text { \# valence e }-(\# \text { bonds }+ \text { \# nonbonding e })
$$

Formal Charges: Example

- What is the structure of $\mathcal{H C N}$?

Two choices:
$\mathcal{H}-C \equiv \mathcal{N}|\quad O \mathcal{R} \quad \mathcal{H}-\mathcal{N} \equiv C|$

1) $\mathcal{H}: 1-(1+0)=0$
2) $\mathcal{H}: 1-(1+0)=0$

C: $4-(4+0)=0$
C: $4-(3+2)=-1$
顺: $5-(3+2)=0$
N: $5 \cdot(4+0)=+1$
Structure which minimizes formal charges is preferred

Back to Redox Reactions

- Redox reactions change the oxidation states of the reactants:

Zn: is oxidized (reducing agent)
\mathcal{H}^{+}: is reduced (oxidizing agent)

Redox Examples

- Combustion
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathcal{H}_{2} \mathrm{O}$ (l)
${ }_{4}^{+1}+0 \quad+{ }^{+4}-2$
C: oxidized $(-4 \rightarrow+4)$
O: reduced $(0 \rightarrow-2)$
- Acid oxidation of a metal
$2 \mathcal{A l}(s)+6 \mathcal{H C l}(a q) \rightarrow 2 \mathcal{A l C l}_{3}(a q)+3 \mathcal{H}_{2}(g)$

Solubility

- How do we know whe ther a compound is soluble in water?
- we will address this from a structural point of view in Chem 36

Nacldissolution movie
-for now, we need to learn Solubility Rules:

Solubility Rules: Goldberg

- ALL are Soluble:
- Nitrates $\left(\mathcal{N}^{\left(\mathrm{O}_{3}\right.}{ }^{-}\right)$
- Chlorates $\left(\mathrm{ClO}_{3}{ }^{-}\right)$
- Acetates $\left(\mathrm{CH}_{3} \mathrm{COO}\right)$
- $\operatorname{Sulfates}\left(\mathrm{SO}_{4}{ }^{2-}\right)$
- Except: $\mathcal{B a S O}_{4}, \mathrm{SrSO}_{4}$, PbSO $_{4}<$ insoluble
$\mathrm{CaSO}_{4}, \mathcal{A g}_{2} \mathrm{SO}_{4}, \mathscr{H g}_{2} \mathrm{SO}_{4}<$ slightly insoluble
- Chlorides, $\mathcal{B r o m i d e s}$ and Iodides
- Except: $\mathcal{A g}^{+}$and $\mathcal{H g}^{+}$salts < insoluble
Pb^{2+} Salts <-slightly insoluble

Acid/Base? Solubility? Botf!

- Calcium Carbonate $+\mathcal{N}$ (itric Acid
$\mathrm{CaCO}_{3}(s)+\mathcal{H N N O}(a q) \rightarrow \mathcal{H}_{2} \mathrm{CO}_{3}(a q)+\mathrm{Ca}\left(\mathcal{N} \mathrm{O}_{3}\right)_{2}(a q)$
base strong acid weakacid salt
Net Ionic:

$$
\mathrm{CaCO}_{3}(s)+2 \mathcal{H}^{+}(a q) \rightarrow \mathrm{Ca}^{2+}(a q)+\mathcal{H}_{2} \mathrm{CO}_{3}(a q)
$$

But, also:

$$
\mathcal{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathcal{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

Radicals Beget Radicals

Radical: chemical species containing an unpaired electron

Example: atomic Cl-7electrons (1unpaired)

- Radicals are VERV reactive and will agressively seekout another atom to pair up the electron and form a covalent Gond:

$$
\begin{aligned}
& \mathcal{R} \mathcal{H}+{ }^{\bullet} \mathrm{O} \mathcal{H} \rightarrow \mathcal{H}_{2} O+\mathcal{R}^{\bullet} \\
& \text { molecule hydroxyl newradical }
\end{aligned}
$$

- Leads to: chain reactions

Solution S toic fiome try

Example Problems

- What volume of $0.100 \mathfrak{M ~}_{\operatorname{Ag} \mathcal{N}} \mathrm{N}_{3}$ will precipitate all of the $\mathcal{B r}$ in a $2.000-\mathrm{g}$ sample of $\mathcal{B a B r}_{2}$?
$2 \mathcal{A g N N} \mathrm{O}_{3}(a q)+\mathcal{B a \mathcal { B }} r_{2}(s) \rightarrow 2 \mathfrak{A g B r}(s)+\mathcal{B a}\left(\mathfrak{N}\left(\mathrm{O}_{3}\right)_{2}(a q)\right.$

$2.000 \mathrm{~g} \mathrm{BaBr} 2_{2} \times 1 \mathrm{~mol} \mathrm{BaBr} \underline{2}_{2} \times 2 \mathrm{~mol} \mathrm{AgNO}_{3} \times 1 \mathrm{~L} \mathrm{AgNO}_{3} \times 1000 \mathrm{~mL}=$ $297.16 \mathfrak{g ~ B a B r} r_{2} \quad 1 \mathrm{~mol} \mathcal{B a B r}_{2} \quad 0.100 \operatorname{mol} \mathfrak{A g} \mathcal{N} \mathrm{SO}_{3} \quad \mathcal{L}$
$=1.346076 \times 10^{2} \mathrm{~mL} \mathcal{A g} \mathcal{N} \mathrm{O}_{3}$ soln
$=\underline{1.35 \times 10^{2} \mathrm{~mL} \mathrm{AgNNO}_{3}}$ soln

Titrations

- Quantitative reactions performed so as to reach
stoichiometric equivalence at a determinable endpoint
$\mathcal{H O} \mathcal{W}$?

Titration: Example

1. Standardization of $\mathcal{N a O \mathcal { H } \text { solution }}$

What's the concentration of the $\mathcal{N a O H}$ solution?
$0.8512 \mathrm{~g} \mathrm{KHP} \mathrm{\mathcal{P}} \quad 1 \mathrm{~mol} \mathcal{H Y P} x \quad 1 \mathrm{~mol} \mathcal{N a O \mathcal { H }}=0.09888 \quad \mathcal{M}$
$0.04215 \mathcal{L} \mathfrak{N a O H} \quad 204.23 \mathrm{~g}$ KYH $1 \mathrm{~mol} \mathcal{H H P} \quad \mathcal{N a O H}$

Titration: Example (cont'd)

2. Titration of Sample

Volume needed to Volume of unknown acid
reachequivalence point
What's the concentration of the acid solution?
 $25.00 \mathrm{~mL} \mathcal{H A} \quad \mathcal{L} \quad 1 \mathrm{~mol} \mathcal{N a O H}$

