

Writing and Balancing Chemical Equations: An Example

- 1. hydrazine + dinitrogen tetroxide \rightarrow nitrogen + water
- 2. $N_2H_4 + N_2O_4 \rightarrow N_2 + H_2O$ Formulas
- 3. $\mathbf{2}N_2H_4 + N_2O_4 \rightarrow \mathbf{3}N_2 + \mathbf{4}H_2O$ <u>Balanced</u>
- 4. $2N_2H_4(l) + N_2O_4(l) \rightarrow 3N_2(g) + 4H_2O(l)$ Done!

35

Quantifying Reaction Chemistry

How many grams of O₂ can be produced via the following reaction from 3.0 grams of KCIO₃?

 KCIO_3 (s) $\xrightarrow{\Delta}$ KCI (s) + O_2 (g) \uparrow

-First, need a balanced equation:

2KCIO₃ (s) $\xrightarrow{\Delta}$ **2**KCI (s) + **3**O₂ (g) \uparrow

37

