Atoms and Mole cules

$$
\begin{gathered}
\text { Chemistry } 35 \\
\text { Fall } 2000
\end{gathered}
$$

$\mathcal{H o w} \mathcal{B i g}$ is an $\mathcal{A t o m}$?

Not too fard to calculate:
-use molar mass (M) and density (d) to obtain Molar Volume
$\left(\mathcal{V}_{m}\right):$
$\mathcal{V}_{m}=$ molar mass/density
$\mathrm{cm}^{3} / \operatorname{mol}=(\mathrm{g} / \mathrm{mol}) /\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
EXAMPLEE: Copper $\left(d=8.96 \mathrm{~g} / \mathrm{cm}^{3}, \mathrm{M}=63.55 \mathrm{~g} / \mathrm{mol}\right)$
$\mathcal{V}_{m}=63.55 / 8.96=7.1 \mathrm{~cm}^{3} / \mathrm{mol}$
So, for $O \mathcal{N} \mathcal{E}$ atom of Cu :
$\left(7.1 \mathrm{~cm}^{3} / \mathrm{mol}\right) /\left(6.022 \times 10^{23}\right.$ atoms $\left./ \mathrm{mol}\right)=1.18 \times 10^{-23} \mathrm{~cm}^{3} /$ atom
Constraine d to a cube: $\approx 2.25 \times 10^{-8} \mathrm{~cm}(=\underline{2.25 \mathcal{A})}$

Atomic Size

Nucleus
$\sim 10^{-4} \AA$

They sure are small!

Organizing the Elements

- Late 1800 's: Mendeleyev arranges elements in order of increasing atomic mass
-finds periodic trends in reactivity:

- arranges so that elements with similar reactivity are grouped

The Periodic Table

$\begin{gathered} 1 \mathrm{~A} \\ 1 \\ \hline \end{gathered}$																	$\begin{aligned} & 8 A \\ & 18 \end{aligned}$
1 H	$\begin{gathered} 2 A \\ 2 \end{gathered}$											$\begin{aligned} & 3 A \\ & 13 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 A \\ & 14 \end{aligned}$	$\begin{aligned} & 5 A \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 6 A \\ & 16 \end{aligned}$	$\begin{aligned} & 7 A \\ & 17 \\ & \hline \end{aligned}$	$\begin{gathered} c_{2} \\ \text { He } \\ \hline \end{gathered}$
$\begin{aligned} & 3 \\ & \text { Li. } \end{aligned}$	$\begin{aligned} & 4 \\ & \mathrm{Be} \end{aligned}$											$\begin{aligned} & 5 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 6 \\ & \mathrm{C} \end{aligned}$	$\stackrel{7}{\mathrm{~N}}$	$\begin{aligned} & 8 \\ & 0 \end{aligned}$	\hat{p}	$\begin{aligned} & 20 \\ & \mathrm{Ne} \\ & \hline \end{aligned}$
$\begin{aligned} & 11 \\ & \mathrm{Na} \end{aligned}$	$\begin{array}{\|c\|} \hline 12 \\ \mathrm{Mg}_{\mathrm{g}} \\ \hline \end{array}$	$\begin{gathered} 3 B \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 4 B \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 5 B \\ 5 \end{gathered}$	$\begin{gathered} 68 \\ 6 \end{gathered}$	$\begin{gathered} 7 B \\ 7 \end{gathered}$	8	$\underbrace{88}_{9}$	10	$\begin{aligned} & 1 B \\ & 11 \end{aligned}$	$\begin{aligned} & 2 B \\ & 12 \end{aligned}$	13 A1	$\begin{aligned} & 14 \\ & 8 \mathrm{i} \end{aligned}$	$\begin{aligned} & 15 \\ & \mathbf{p} \end{aligned}$	$\begin{aligned} & 16 \\ & 5 \end{aligned}$	${ }_{\mathrm{Cl}}^{17}$	$\begin{aligned} & 18 \\ & \mathrm{Ar} \end{aligned}$
19	20 $C a$	21 Se	22	$\stackrel{23}{V}$	${ }_{2}^{28}$	25 Mn	26 Pe	${ }^{27}$	$\begin{aligned} & 28 \\ & \mathrm{Ni} \end{aligned}$	$\begin{aligned} & 29 \\ & \mathrm{Cu} \end{aligned}$	$\begin{aligned} & 30 \\ & \mathbf{2 n} \end{aligned}$	31 Ga	$\begin{aligned} & 32 \\ & \mathrm{Ce} \end{aligned}$	$\begin{aligned} & 33 \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 34 \\ & 50 \end{aligned}$	35 Br	36 Kr
37 $\mathbf{8 b}$	35 $8 r$	39 Y	40 $\mathbf{Z r}$	$\begin{aligned} & 41 \\ & \mathrm{Nb} \end{aligned}$	$\begin{aligned} & 42 \\ & M o \end{aligned}$	${ }^{43}$	44 Ru	[R h	Pd	$\begin{aligned} & 47 \\ & \mathrm{Ag} \end{aligned}$	$\begin{aligned} & 48 \\ & \mathrm{Cd} \end{aligned}$	49	$\begin{aligned} & 50 \\ & \mathrm{Sn} \end{aligned}$	$\begin{aligned} & 51 \\ & 81 \end{aligned}$	$\begin{aligned} & 52 \\ & \mathrm{~T} \end{aligned}$	$\begin{gathered} 53 \\ 1 \end{gathered}$	$\begin{aligned} & 54 \\ & X e \end{aligned}$
$\begin{aligned} & 55 \\ & 6 \end{aligned}$	$\begin{aligned} & 56 \\ & \mathrm{Ba} \end{aligned}$	$\begin{aligned} & 57 \\ & 4 \end{aligned}$	$\begin{aligned} & 72 \\ & \mathbf{H f} \end{aligned}$	$\begin{aligned} & 73 \\ & \mathrm{Ta} \end{aligned}$	$\begin{aligned} & 74 \\ & \mathbf{w} \end{aligned}$	$\begin{aligned} & 75 \\ & \mathbf{R e} \end{aligned}$	$\begin{aligned} & 76 \\ & 08 \end{aligned}$	$\begin{aligned} & 77 \\ & 1 r \end{aligned}$	$\begin{aligned} & 78 \\ & \mathrm{Pt} \end{aligned}$	$\begin{aligned} & 79 \\ & \mathrm{Au} \end{aligned}$	$\begin{array}{\|l\|} \hline 90 \\ H_{8} \end{array}$	$\begin{aligned} & 81 \\ & \mathbf{7 1} \end{aligned}$	$\begin{aligned} & 82 \\ & \mathrm{Fb} \end{aligned}$	$\begin{aligned} & 83 \\ & 81 \end{aligned}$	$\begin{aligned} & 84 \\ & \mathrm{Po} \end{aligned}$	$\begin{aligned} & 85 \\ & \text { At } \end{aligned}$	$\begin{aligned} & 86 \\ & R_{\mathrm{n}} \end{aligned}$
87 Br_{7}	83 8.	89 Ac	104 $8 i$	Db	106 $\$ 8$	107 8%	108 H	109 Mt	$\begin{aligned} & 110 \\ & U_{\mathrm{un}} \end{aligned}$	$\begin{aligned} & 111 \\ & \text { Uuu } \end{aligned}$	$\begin{array}{\|l\|} \hline 112 \\ \mathrm{U} \mathrm{wb} \\ \hline \end{array}$						
	Metals			$\begin{aligned} & 59 \\ & \mathrm{Ce} \end{aligned}$	$\begin{aligned} & 59 \\ & \mathrm{Pr} \end{aligned}$	$\begin{aligned} & 60 \\ & \mathrm{Nd} \end{aligned}$	$\begin{aligned} & 61 \\ & \mathrm{Pm} \\ & \hline \end{aligned}$	$\begin{aligned} & 62 \\ & \mathrm{Sm} \end{aligned}$	$\begin{aligned} & 63 \\ & \mathrm{Eu} \end{aligned}$	$\begin{aligned} & 64 \\ & \mathrm{Gd} \end{aligned}$	$\frac{65}{T b}$	$\begin{aligned} & 66 \\ & \mathrm{Dy} \end{aligned}$	$\begin{aligned} & 67 \\ & \mathrm{Ho} \\ & \hline \end{aligned}$	$\begin{aligned} & 68 \\ & E r \end{aligned}$	$\begin{aligned} & 69 \\ & \mathrm{Tm} \end{aligned}$	$\begin{aligned} & 70 \\ & \mathbf{Y b} \end{aligned}$	$\begin{aligned} & 71 \\ & \mathrm{Lu} \end{aligned}$
Metallolds				$\begin{aligned} & \text { 90 } \\ & \text { Th } \end{aligned}$	$\begin{aligned} & \mathrm{PI} \\ & \mathrm{Pz} \end{aligned}$	$\begin{aligned} & \$ 2 \\ & \mathrm{U} \end{aligned}$	$\begin{aligned} & 93 \\ & \mathrm{~Np} \end{aligned}$	$\begin{aligned} & 94 \\ & \mathrm{Pu} \end{aligned}$	$\begin{aligned} & 95 \\ & \mathrm{Am} \end{aligned}$	$\begin{gathered} 96 \\ \mathrm{Cm} \end{gathered}$	$\begin{aligned} & 97 \\ & \mathbf{B k} \end{aligned}$	$\begin{aligned} & 98 \\ & \mathrm{Cf} \end{aligned}$	$\begin{aligned} & 99 \\ & \text { Es } \end{aligned}$	$\begin{aligned} & 100 \\ & \mathrm{Fm} \end{aligned}$	$\begin{aligned} & \hline 301 \\ & \mathrm{Md} \end{aligned}$	$\begin{aligned} & 102 \\ & \mathrm{NoO} \end{aligned}$	$\begin{gathered} 109 \\ \mathrm{~L} \\ \hline \end{gathered}$

Nonenetals

Groups on the Periodic Table

- Group 8A (far right): Noble Gases
- VERV unreactive
- Group $1 \mathcal{A}$ (far left): Alkali Me tals
-S oft, low m.p. metals
- VERO reactive (they react with water to give off \mathcal{H}_{2})
- Group 2A: Alka (ine Earth Metals
- Group 7A: Halogens
- $\mathcal{N O} \mathcal{N}$-metals (insulators, brittle, gaseous)
- Group 6A: Chalcogens

Molecules

Definition: Two or more atoms bound together

- Identified by a Formula:

Molecular Formula - gives the actual numbers and types of atoms in molecule

Empirical Formula - gives the relative numbers of atoms in molecule (smallest whole. number ratio)

Mole-Based Calculations

- How many grams of Pfospforous are there in $0.010 \mathrm{~mol}_{2} \mathrm{O}_{5}$?

Strategu: $\operatorname{mol} \mathcal{P}_{2} \mathrm{O}_{5} \rightarrow \operatorname{mol} P \rightarrow g \mathcal{P}$
$0.010 \mathrm{~mol} \mathcal{P}_{2} \mathrm{O}_{5} \times \frac{2 \mathrm{~mol} \mathcal{P}}{1 \mathrm{~mol} \mathcal{P}_{2} \mathrm{O}_{5}} \times \frac{30.974 \mathrm{~g} \mathcal{P}}{1 \mathrm{~mol} \mathcal{P}}=0.61948 \mathrm{~g} \mathcal{P}$ Round to: $\underline{0.62 \text { g Phosphorous }}$

Empirical Formula from \%Composition

- What is the empirical formula for a binary compound which is found to be:
56.4% Oxygen (6y mass)
43.6% Phosphorous (6y mass)?

Strategy: \% ->grams ->mol
(\% is a relative measure, so $\mathcal{D E F} \mathcal{F} \mathcal{N} \mathcal{E}$ a sample size $(100 \mathrm{~g})$) In a $100-\mathrm{g}$ sample:

$$
\begin{aligned}
& 56.4 \mathrm{gO} \times \frac{1 \mathrm{~mol} O}{15.999 \mathrm{gO}}=\frac{3.525 \mathrm{~mol} O}{} \\
& 43.6 \mathrm{~g} \mathrm{P} \times \frac{1 \mathrm{~mol} \mathcal{P}}{30.974 \mathrm{~g} \mathcal{P}}=1.4076 \mathrm{~mol} \mathrm{P}
\end{aligned}
$$

Emp. Form. - continued

This gives: $\mathcal{P}_{1.4076} \mathrm{O}_{3.525}$
Dividing: $\mathcal{P O}_{2.50} \quad \rightarrow \mathcal{P}_{2} \mathrm{O}_{5}$
-What about a MO LECULAR formula?
-need a molecular mass of the compound
Example: $\mathfrak{M W}$ of $\mathcal{P}_{2} \mathrm{O}_{5}$ cmpd is $284 \mathrm{~g} / \mathrm{mol}$
Empirical Formula Mass $\approx 2 \chi 31+5 \chi 16=142$
$\mathcal{M W} / \mathcal{E m p}$ Form Mass $=284 / 142=2$
So: $2 \times \mathcal{P}_{2} O_{5}=\mathcal{P}_{4} O_{10}$

\%-Composition from a Formula

Calculate the $\%-\mathcal{P}, \%-O$ in $\mathcal{P}_{2} \underline{O}_{3}$:

1) Calculate grams \mathcal{P} \& O per mol $\mathcal{P}_{2} \mathrm{O}_{3}$
$1 \mathrm{~mol} \mathrm{P}_{2} \mathrm{O}_{3} \times \underline{2 \mathrm{~mol} \mathcal{P}} \times 30.974 \mathrm{~g} \mathcal{P}=61.948 \mathrm{~g} \mathcal{P}$ $1 \mathrm{~mol} \mathrm{P}_{2} \mathrm{O}_{3} \quad 1 \mathrm{~mol} P$
$1 \mathrm{~mol} \mathrm{P}_{2} \mathrm{O}_{3} \times \frac{3 \mathrm{molO}}{} \times 15.999 \mathrm{gO}=47.997 \mathrm{gO}$

$$
1 \mathrm{~mol}_{2} \mathrm{O}_{3} \quad 1 \mathrm{molO}
$$

2) ${\text { Calc grams per mole } \underline{P}_{2} \underline{O}_{3}}_{\underline{3}}$

$$
\begin{aligned}
2 \mathcal{P}=2 \times 30.974 & =61.948 \\
3 O=3 \times 15.999 & =\frac{47.997}{109.945 \mathrm{~g} / \mathrm{mol} \mathcal{P}_{2} O_{3}}
\end{aligned}
$$

3) Divide to get \%-composition

$$
\begin{aligned}
& \underline{P}: \quad \frac{61.948 \mathrm{gP}}{109.945 \mathrm{~g} \mathcal{P}_{2} O_{3}} \times 100=\underline{56.34 \% \mathrm{P}} \\
& \underline{O:} \quad \frac{47.997 \mathrm{gO}}{109.945 \mathrm{~g} \mathrm{\mathcal{P}}_{2} O_{3}} \times 100=\underline{43.66 \% O}
\end{aligned}
$$

\mathcal{N} ot all Compounds are Mole cules

Let's look at the reaction of an Alkali Me tal (\mathcal{N} a) and a Halogen (Cl):

Ionic Compounds

Formed by reaction of a metal with a non-metal:

Chemical Reactivity

- Why do elements in a group fave similar reactivity? -have the same \# of valence electrons -The Octet Rule: elements react so as to attain a Noble Gas configuration (8 e-in "valence shell"
$\mathcal{H O W}$? Share $e^{->}$Covalent Bond
Transfer e- -> Ionic Bond

Bonding/Reactivity Examples

- $\mathfrak{N a C l}$-ionic bond
$\mathcal{N a}$-Group $1 \mathcal{A}-1$ valence e
Cl - Group $7 \mathcal{A}-7$ valence e
$\mathcal{N a} \square \mathcal{N} a^{+}+e^{-}$(gives \mathfrak{N} a a full shell)
$\mathrm{Cl}+\mathrm{e}-\square \mathrm{Cl}$ (gives Cl a full shell)
- $\frac{O}{O}-\frac{- \text { covale nt } 6 \text { ond }}{\text { Group } 6 \mathcal{A}-6 \text { valence e }}$
$O+2 e \cdot \square O^{2 \cdot}$ (oxide anion)
$->$ Where will $\mathcal{E A C H}$ O get $2 e$ e? SHARE
$O+O \square O=O$ (double bond - sfare $4 e^{-}$)

Bonding: Ionization Energies

- Ionization Energy (IE)
-quantifies the tendency of anelectron to leave an atom in the gas phase:

$$
X(\mathcal{g}) \square X^{+}(\mathcal{g})+e \quad \Delta \mathcal{E}=I \mathcal{E}
$$

IE: \quad-always positive (energy $\mathcal{A D D E D})$

- INCR across row
- DECR down a group

Bonding: Electron Affinity

- Electron Affinity (EA)
-quantifies ability of an atom to attract an e-in the gas phase

$$
X(g)+e^{-} \rightarrow X \cdot(g) \quad-\Delta \mathcal{E}=\mathcal{E A}
$$

EA: \quad it's the energy rele ased upon addition of anelectron to an atom
-can be positive or negative
(pos: atom wants the e-
neg: atom fappy as an atom)

Bonding: Electronegativity

- Electronegativity (EN)
-combines $I \mathcal{E}$ and $\mathfrak{E A}$ terms to give the relative ability of an atom to attract e's to itself when bonded to another atom

EN: -INCRacross a row

- DECR down a group
- Best to consider $\triangle \mathcal{E N}$ for a bond

EN: Examples

- $\mathcal{N a C l}: \quad \mathcal{N a} \quad \operatorname{EN}=0.93$

$$
\Delta \mathcal{E N}=2.23 \text { (ionic) }
$$

Cl $E \mathcal{E N}=3.16$

- $\underline{O}_{2}-\quad 0 \quad \mathrm{EN}=3.44 \quad \Delta \mathcal{E N}=0$ (covalent)
- $\underline{H C l}: \quad \mathcal{H} \quad \mathcal{E N}=2.2$ $\Delta E \mathcal{N}=0.96$ (?)
$\mathrm{Cl} \quad \mathrm{EN}=3.16 \quad$ (polar covale $n t$)

$\mathcal{B o n d}$ Polarity: Dipole Momement

- $\underline{H C l}$
$\delta_{+} \quad \delta-$
$\mathcal{H}-\mathcal{C l}$
$2.2 \quad 3.2$

Polar Covalent bond: share e; but not equally

- Quantify via: $\mathcal{D I P O} \mathcal{L E} \mathcal{M O} \operatorname{MED} \mathcal{N}(\mu)$

Dipole Moment Examples

$O \quad \mathcal{E N}=3.44$
$\mathcal{H} \quad \mathcal{E N}=2.2 \quad \triangle \mathcal{E N}=1.24$
-each $\mathcal{H}-O$ bond is polar, 6 ut does the $\mathcal{M O L E C U L E}$ have a net dipole moment?
$\square \underline{C H}_{4} \quad \mathcal{E N}=2.55$
$\mathcal{H} \quad \mathcal{E N}=2.2 \quad \Delta \mathcal{E N}=0.35$

- each $\mathcal{C}-\mathcal{H}$ bond fris a dipole moment, but does the entire $\mathcal{M O} \mathcal{L E C O L E}$ fave a net dipole moment?

We need to know the STRUCTURE!

Visualizing Molecules

\mathcal{H} ow do we figure out the structure?

Le wis \mathcal{B} onding \mathcal{T} fe ory

Based on some simple assumptions: - valence electrons are the major players in chemical bonding -ionic 6 onds form when electrons are transferred between atoms

- covalent bonds form when electrons are shared by atoms
-the extent of electron transfer/sharing is so as to give eachatom a stable electron configuration (usually an octet)

Le wis Symbols

- Place valence electrons around element symbol:

$$
: X:<\text { element } X(4 e)
$$

- pair electrons, when possible
- Gonds represented by daskes (-)

Example:

$$
: \mathcal{F}-\mathcal{F}:
$$

Drawing Le wis S tructures

- The Quick and Dirty Method:

1. Add up the total number of valence electrons (from Group \#)
2. Draw skeleton structure with only single bonds
3. Distribute remaining electrons around atoms as non-bonding electrons
4. Redistribute non-bonded electrons into multiple bonds so that each atom fas an octet

Example

Sulfur Dioxide $\left(\mathrm{SO}_{2}\right)$:
S é O: Group 6A $\rightarrow 6 \times 3=18$ e

- Draw Skele ton structure
$2 e / b o n d$, le aves 14 e
- Move e to make multiple bonds and octets

Done!

Getting Structures

- Once we have the Le wis diagram, we can determine the structure by looking at the distribution of bonded and non-bonded electron pairs about a central atom, using:

Valence Shell Electron Pair Repulsion Theory
> electron pairs will repeleach other and will distribute themselves about a central atom so as to maximize the ir separation in 3-dimensional space

VS EPR The ory

Count electron pairs (include nonbonded!)
$2->$ Line ar (180 0° bond angle)
$3->$ Trigonal Planar (120° bond angle)
$4->$ Te trafiedral (109.5ºnd angle)
$5->$ Trigonal Bipyramidal
$6->$ Octafiedral

VS EPRS tructures

Linear

Bent

An Example: $\mathcal{N} \mathcal{H}_{3}$

Exceptions to the Octet Rule

- Sometimes it's not filled
- incomplete octet ($\mathcal{B e}^{2} \mathcal{F}_{2}, \mathcal{B F}_{3}$)
- Sometimes it's OVER filled
- "expanded" octet $\left(\mathcal{S}_{4}, \mathcal{P C l}_{5}, S \mathcal{F}_{6}\right)$
- Sometimes it cant be filled
-odd \# of electrons ($\mathfrak{N}(\mathrm{O}$)

Writing and Balancing Chemic al Equations: An Example

- One type of rocket fuelreacts fydrazine and dinitrogen tetroxide and produces nitrogengas and water

1. Kydrazine + dinitrogen tetroxide \rightarrow nitrogen + water
2. $\mathcal{N}_{2} \mathcal{H}_{4}+\mathcal{N}_{2} \mathrm{O}_{4} \rightarrow \mathcal{N}_{2}+\mathcal{H}_{2} \mathrm{O} \quad \underline{\text { Formulas }}$
3. $\quad 2 \mathcal{N}_{2} \mathcal{H}_{4}+\mathcal{N}_{2} O_{4} \rightarrow 3 \mathcal{N}_{2}+4 \mathcal{H}_{2} O \quad \underline{\text { Balanced }}$
4. $\quad 2 \mathcal{N}_{2} \mathcal{H}_{4}(l)+\mathcal{N}_{2} \mathrm{O}_{4}(l) \rightarrow 3 \mathcal{N}_{2}(g)+4 \mathcal{H}_{2} \mathrm{O}$ (l) $\underline{\text { Done! }}$

Another Example

- A solution of sodium chloride was added to a solution of silver nitrate, forming a precipitate of silver chloride

1. sodium choride + silver nitrate \rightarrow silver chloride + sodium nitrate
2. $\mathfrak{N a C l}+\mathfrak{A g N O} \mathrm{Na}_{3} \rightarrow \mathfrak{A g C l}+\mathfrak{N a N N} \mathrm{N}_{3} \quad \underline{\text { Formulas }}$
3. $\mathfrak{N a C l}+\mathfrak{A g N} \mathrm{N}_{3} \rightarrow \mathcal{A g C l}+\mathfrak{N a \mathcal { N } \mathrm { O } _ { 3 } \quad \underline { \mathcal { B a l a n c e d } }}$
4. $\mathfrak{N a C l}(a q)+\mathfrak{A g N} \mathrm{NO}_{3}(a q) \rightarrow \mathcal{A g C l}(s)+\mathcal{N a N} \mathrm{NO}_{3}(a q)$
$\mathcal{N} a^{+}(a q)+\mathcal{C l}(a q)+\mathcal{A g}^{+}(a q)+\mathcal{N} \mathrm{O}_{3}^{-}(a q) \rightarrow$
$\mathfrak{A g C l}(s)+\mathcal{N} a^{+}(a q)+\mathcal{N} \mathrm{O}_{3}^{-}(a q)$

$$
\mathfrak{A g}^{+}(a q)+\mathrm{Cl}(a q) \rightarrow \operatorname{AgCl}(s) \quad \underline{\mathcal{N e t} \text { Ionic Equation }}
$$

Quantifying Reaction

Chemistry

- How many grams of O_{2} can be produced via the following reaction from 3.0 grams of KClO_{3} ?

$$
\mathrm{KClO}_{3}(s) \xrightarrow{\Delta} \mathrm{KCl}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \uparrow
$$

-First, need a balanced equation:

$$
2 \mathrm{KClO}_{3}(s) \stackrel{\Delta}{\rightarrow} 2 \mathcal{K C l}(s)+3 \mathrm{O}_{2}(g) \uparrow
$$

More $Q \mathcal{R C}$

- Next: remember that only $\mathcal{M O} \mathcal{L E S}$ can be used to quantify chemicalchanges:
$g \mathrm{KClO}_{3} \rightarrow \operatorname{moL} \mathrm{KClO}_{3} \rightarrow \operatorname{moL} \mathrm{O}_{2} \rightarrow g \mathrm{O}_{2}$

$$
\begin{aligned}
& =1.17498 \mathrm{~g} \mathrm{O} \\
& =\underline{1.2 \mathrm{gO}} \underline{2}
\end{aligned}
$$

Reaction Reality: Percent Yield

- Previous example gave the theoretical yield for the reaction... more realistically:
-S uppose the reaction of $3.0 \mathrm{~g} \mathrm{KClO}_{3}$ produced $0.55 \mathrm{~g} \mathrm{O}_{2}$; calculate the percent yield of the reaction
$\%$-yield $=\frac{\mathcal{A c t u a l}(\operatorname{exptl}) \text { yield }}{\text { The oretical Yield }} \times 100$
$=\frac{0.55 \mathrm{~g} \mathrm{O}_{2}}{1.175 \mathrm{~g} \mathrm{O}_{2}} \times 100=\underline{47 \%}$

Limiting Reagent

- We don't always react a stoichiometric amount of reactants:
- How many $g_{2} \mathcal{P}_{5}$ will be produced by the reaction of 2.00 g P with $5.00 \mathrm{~g} \mathrm{O}_{2}$?

Reaction: $P+O_{2} \rightarrow \mathcal{P}_{2} O_{5}$
Balance: $\quad 4 \mathcal{P}+5 \mathrm{O}_{2} \rightarrow 2 \mathcal{P}_{2} \mathrm{O}_{5}$
Moles: $2.00 \mathrm{~g} \mathcal{P} \times \frac{1 \mathrm{~mol} \mathcal{P}}{30.974 \mathrm{~g}}=0.06457 \mathrm{~mol} \mathrm{P}$
$5.00 \mathrm{~g} \mathrm{O}_{2} \times \underline{\mathrm{TmolO}_{2}}=0.1563 \mathrm{molO}_{2}$ $31.998 \mathrm{~g} \mathrm{O}_{2}$

Limiting Reagent: Cont'd

- Compare actual mol to mol required:
$0.06457 \mathrm{~mol} P \times \frac{5 \mathrm{molO}}{4 \mathrm{~mol} \underline{\mathcal{P}}}=0.08071 \mathrm{~mol} \mathrm{O}_{2}$
with actual amt of P
So, there will be O_{2} leftover after all of the \mathcal{P} is consumed:

$$
\begin{aligned}
& 0.1503 \mathrm{molO} \mathrm{O}_{2}-\text { actual } \\
& \frac{-0.08071 \mathrm{molO}}{2}-\text { reacted } \\
& \hline 0.0756 \mathrm{~mol} \mathrm{O}_{2} \text { unreacted }(\text { excess })
\end{aligned}
$$

The reaction is limited by the amount of \mathcal{P}, so it is the Limiting Reagent.

Limiting Reagent: The Final Straw

\square Since \mathcal{P} is the limiting reagent, we use its amount for the final calculation:

$$
g \mathcal{P} \rightarrow \operatorname{mol} P \rightarrow \operatorname{mol} P_{2} O_{5} \rightarrow g P_{2} O_{5}
$$

$2.00 \mathrm{~g} P \times \underline{1 \mathrm{~mol} P} \times \underline{2 \mathrm{~mol} \underline{P}_{2} \underline{O}_{5}} \times \underline{141.943 \mathrm{~g} \underline{P}_{2} \underline{O}_{5}}=$ $30.974 \mathrm{~g} \mathrm{P} \quad 4 \mathrm{~mol} P \quad 1 \mathrm{~mol} \mathrm{P}_{2} \mathrm{O}_{5}$

$$
\begin{aligned}
& =4.58265 \mathcal{g} \mathcal{P}_{2} O_{5} \\
& =4.58 \operatorname{gq}_{2} \underline{O_{5}} \underline{ }
\end{aligned}
$$

