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1. Section Rings of Stacky Curves

1.1. Background and Context. Computing the section ring of schemes such as curves and sur-
faces is a problem in algebraic geometry dating back at least as early as Petri’s famous theorem
that every genus five canonical, non-trigonal curve which is not a smooth plane quintic is the com-
plete intersection of three smooth quadrics in P4 (see e.g. [GL85] for a formal statement and proof).

For readability we collect some definitions and notation.

Let X denote a tame, separably rooted stacky curve, where we mean stacky curve in the
sense of [VZB22, Section 5.2]. If D is a Weil divisor on X , then a ring of the form

RD “
à

dě0

H0pX , dDq

is called a section ring of D, a canonical ring in the case when D “ KX is a canonical divisor on
X , or a log canonical ring if D “ KX `∆ for some effective divisor ∆ on X supported at distinct
points. We say an effective divisor ∆ on X is a log divisor if it is given as a sum of distinct points
of X . If x is a point on X has a nontrivial stabilizer (the algebraic spaces representing the functors
IsompPi, Piq) of order e, then we say x is a stacky point of X . Note that [VZB22] specifies that a
log divisor is supported at distinct non-stacky points, but we drop this assumption in this document.

Let X denote the coarse space of X and let KX be a canonical divisor on X. If X has stacky
points P1, ¨ ¨ ¨ , Pr of orders e1, ¨ ¨ ¨ , er respectively, we have a linear equivalence

KX „ KX `R “ KX `

r
ÿ

i“1

ˆ

1´
1

ei

˙

Pi.

If X is a stacky curve of genus g with stacky points P1, ¨ ¨ ¨ , Pr and ∆ is a log divisor supported at
δ distinct points of X , we call the tuple pg; e1, ¨ ¨ ¨ , er; δq, the signature of the log stacky curve
formed by the pair pX ,∆q. Let Ω1

X denote the sheaf of holomorphic differentials on a stacky curve
X .

Let α, β P Qě0. We will discuss how to use the monoids formed by the lattice Z2 and the angle
between α and ´β:

M “ tpd, cq P Z2 : ´dβ ď c ď dαu

to determine bases for section rings of divisors of form D “ αp8q ` βpP q on genus 0 and 1 curves.

An example of a canonical ring of a log stacky curve is the algebra of modular forms for Γ some
congruence subgroup of SL2pZq. We use the following terminology to describe this example. Let H
denote the upper half-plane of the complex numbers C. Let Γ ď SL2pRq be a Fuchsian group with
finite coarea. There is an action by SL2pZq on H by fractional linear transformations. The cusps
of Γ are the set of Γ-equivalence classes of

CpΓq “ tz P P1pQq : γz “ z for some γ with | trpγq| “ 2u.
1
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A modular form for Γ of weight k P Zě0 is a holomorphic function f : HÑ C such that

fpγzq “ pcz ` dqkfpzq, for all γ “ ˘

ˆ

a b
c d

˙

P Γ

and such that lim
zÑc

fpzq exists for all cusps c of Γ.

If k is even, then we have
d

dz

ˆ

az ` b

cz ` d

˙

“
1

pcz ` dq2
since ad´ bc “ 1 for γ “

ˆ

a b
c d

˙

P Γ. So

a given modular form f of weight k for Γ satisfies the transformation rule fpγzq “ pcz ` dqkfpzq
for all γ P Γ and z P H if and only if

fpγzqdpγzqbk{2 “ fpzqdzbk{2

for all γ P Γ. We say such differentials fdzbk{2 descend to the modular curve. We have an
isomorphism between modular forms of weight k and differentials MkpΓq

„
Ñ H0pX,Ω1p∆qbk{2q,

given by fpzq ÞÑ fpzqdzbk{2, where X is the coarse space of the modular curve associated to a
compactification of ΓzH, and ∆ is the log divisor of the cusps of Γ, and we leave the thorough
treatment of this compactification and log divisor to e.g. [VZB22, Section 6.2].

1.2. Existing Theory of Section Rings for Stacky Curves. The cutting edge of this theory
are recent techniques to compute the canonical ring of a log stacky curve. The main theorem
[VZB22, Theorem 8.3.1] is an inductive result which computes the canonical rings of a given log
stacky curve pX ,∆q in terms of its signature pg; e1, ¨ ¨ ¨ , er; δq with r ě 1 when g ě 2, g “ 1 and
r` 2δ ě 2, or when g “ 0 and δ ě 2, in terms of canonical rings with fewer stacky points, i.e. with
signature pg; e1, ¨ ¨ ¨ , er´1; δq. It is hard to overstate the importance or breadth of this result. My
work on stacks deals with a generalization of this theory along the lines of the paper [O’D15].

The generalization which O’Dorney considers is the case of a section ring for D, some divisor on
P1 with coefficients in Q. Since D need not correspond to any canonical or log canonical divisor,
his ideas are not phrased in terms of signatures like [VZB22]. O’Dorney’s main results are [O’D15,
Theorems 6 and 8] which compute explicitly the section ring of a 2-point Q-divisor on P1, and
give bounds for the degrees of generators in the general n-point case respectively. In the former,
given a divisor D “ αP ` βQ on P1 with α, β P Q and α ` β ě 0, O’Dorney find generators and
relations in terms of the best lower and upper approximations to α and ´β respectively. One begins
from a common best approximation c0{d0, a rational number with minimal denominator such that
´β ď c0{d0 ď α. Then the best approximations with greater denominators index generators and
give information on relations, all of which may be read off from the monoid M. In [O’D15, Theorem
8], the least common multiples of the denominators of a general Q-divisor D “

ř

i αiPi give bounds
for the degrees of generators and relations for the section ring of D.

1.3. My Work on Section Rings for Stacky Curves. In joint work with Evan O’Dorney and
Michael Cerchia [CFO23] we consider canonical rings of Q-divisors on stacky curves of genus 1.
Many of the techniques, such as the consideration of monoid algebras M and the use of best ap-
proximations from [O’D15] apply to this situation, but there are several subtleties for stacky elliptic
curves which are not present in the genus 0 case.

In particular, whereas on P1 any three points may be mapped to any three others with some
automorphism, there are torsion points on elliptic curves. This changes the nature of the Riemann-
Roch spaces, since for example there are no functions with single simple poles. According to
whether or not a given Q-divisor D is supported at torsion points, there are significant changes to
the monoids M and the indices of generators for the minimal presentation of the canonical ring
RD therefore depend on whether D is supported at torsion points or not.
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Example 1.1. Suppose that D “
2

7
p8q `

3

5
P is an effective divisor on a genus 1 curve E, where

P is non-torsion on E. Then the ring RD is generated by functions in degrees 1, 4, 4, 5, 7, 7.

M “

"

pd, cq P Z2 : ´d

ˆ

3

5

˙

ď c ď d

ˆ

2

7

˙*

.

x

y

0 1 2 3 4 5 6 7

´4

´3

´2

´1

0

1

2

2
7

´3
5

‚

‚

‚

‚

‚

‚

ˆ ˆ

ˆ

ˆ ˆ

ˆ

˝ ˝ ˝ ˝ ˝ ˝

˝ ˝ ˝

˝ ˝ ˝ ˝

˝ ˝

Shaded-in points of M denote generators for RD in the case when D is not supported at any torsion
points. Open dots indicate functions on E which correspond to linear combinations of shaded dots
in M. Finally, the ˆ-dots in the diagram indicate points in M which would correspond to generators
for M, and hence RD, if P were d-torsion on E, where d denotes the x-coordinate of such a point
in M. Such square points do not correspond to generators for M when P is non-torsion.

We have results for several cases. We can describe explicitly the generators for the section ring
of a Q-divisor supported at exactly one point with [CFO23, Theorem 2.3] and can describe initial
terms in the ideal of relations for the ring in [CFO23, Theorem 2.7]. In the effective case of 2-point

Q-divisors, say D “ αp1qpP p1qq`αp2qpP p2qq is some divisor on an elliptic curve C supported on two

points P piq. We may assume that αp1q ě αp2q since the roles of the points P piq may be interchanged.
We explicitly describe the generators for the section ring RD in [CFO23, Theorem 3.2] and can
give initial terms for the ideal of relations for RD with [CFO23, Theorem 3.5]. We aim to give a
bound for the maximal degree of generators in a minimal presentation of RD in the general case of
a divisor supported at n points.

2. Drinfeld modular forms

2.1. Background. The Drinfeld setting is a function-field analog of the classical number-field the-
ory which is the usual for an arithmetic geometer. There are versions of some notable features
of classical number theory, for example elliptic and modular curves, and modular forms. The
Drinfeld setting also features analogs of class-field theory, such as the function-field version of the
Kronecker-Weber theorem and the theory of Galois representations of K which motivated Drin-
feld’s original work. More recent work of Goss and Gekeler defines more objects familiar to an
arithmetic geometer in the Drinfeld setting. In his 1986 manuscript [Gek86, Page XIII] asks for
an arithmetic interpretation of Drinfeld modular forms for congruence subgroups, in particular in
terms of generators and relations for the algebra of Drinfeld modular forms.

We introduce this theory by collection definitions and notation here for ease of reading.

In place of Z, consider the polynomial ring A “ FqrT s for q a power of an odd prime, for Q we
take the fraction field K “ FqpT q, the completion at the infinite place is denoted K8 “ Fqpp1{T qq.
The algebraic closure of K8 is infinite dimensional over K8 and is not complete with respect to the
unique extension of the degree valuation, but the completed algebraic closure C is both complete
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and algebraically closed.

The Drinfeld setting version of the upper half-plane is the rigid analytic space (in the sense of
[FvdP04]) Ω “ C ´K8. In the Drinfeld setting, we have an action of GL2pAq on Ω by fractional
linear transformations, and we note that det : GL2pAq Ñ Fˆq . Let N P A be some non-constant,
monic polynomial. Let ΓpNq Ă Γ1pNq Ă Γ0pNq be the subgroups of GL2pAq containing the
matrices of forms

ˆ

1 0
0 1

˙

,

ˆ

1 ˚

0 ˚

˙

, and

ˆ

˚ ˚

0 ˚

˙

modulo N

respectively. We say a congruence subgroup is some subgroup Γ of GL2pAq containing ΓpNq for
some N, and we call the N of least degree the conductor of Γ. As in [Bre16], for Γ a congruence
subgroup let

Γ2 “ tγ P Γ : detpγq is the square of some element of Fˆq u.
In analogy with the parameter q “ e2πiz at 8 in the classical setting, we define a parameter at

8 in the Drinfeld setting. First we fix a Carlitz period π P K8p
q´1
?
´T q (see [Car38] for more

exposition). Then, for eApzq an exponential function (see e.g. [GR96, p2.7.2q] for a definition), we
define a parameter at 8, upzq, by

upzq “
1

πeApzq
“ π´1

ÿ

aPA

1

z ` a
.

Unlike the classical setting, the differential dz has a double pole at 8 in the Drinfeld setting, since
deApzq

dz
“ 1, so that

du

u2
“ ´πdz.

Definition 2.1. [Gek86, Definition p3.1q] Let Γ ď GL2pAq be a congruence subgroup. A modular
form of weight k P Zě0 and type l P Z{ppq´ 1qZq is a holomorphic function f : Ω Ñ C such that

(1) fpγzq “ detpγq´lpcz ` dqkfpzq for all γ “

ˆ

a b
c b

˙

P Γ, and

(2) f is holomorphic at the cusps of Γ.

Write Mk,lpΓq for the finite-dimensional C-vector space of Drinfeld modular forms for a congru-
ence subgroup Γ ď GL2pAq with weight k and type l (see [Gos80] for a proof this space is finite
dimensional). The algebra MpΓq of modular forms graded coarsely by weight and finely by type,
i.e.

MpΓq “
à

kě0
l pmod q´1q

Mk,lpΓq,

since Mk,l ¨Mk1,l1 ĂMk`k1,l`l1 .

The weight and type of a Drinfeld modular form are not independent: if there is a non-zero
modular form f of weight k P Zě0 and l P Z{pq ´ 1qZ, then k ” 2l pmod q ´ 1q. Indeed, if

γ “

ˆ

α 0
0 α

˙

for some α P Fˆq and if f is non-zero modular for Γ of weight k and type l then

fpγzq “ f
´αz

α

¯

“ αkα´2lfpzq “ fpzq,

so αk “ α2l in Fˆq and we conclude k ” 2l pmod q ´ 1q.

Drinfeld modular forms have series expansions in terms of this parameter upzq at 8 analogous
to q-series for classical modular forms, and likewise we say a form with coefficient a0 “ 0 is a cusp
form.
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Drinfeld modules of rank 2, the function-field analogs of elliptic curves, have likewise to elliptic
curves, a moduli space which can be described by quotients. A quotient of the compactification
Ω Y P1pKq by a congruence subgroup Γ is a smooth, rigid analytic space of dimension 1. This
quotient is algebraic in the sense that there is a canonical isomorphism to the underlying (rigid)
analytic space of a smooth irreducible projective curve over C. That is, the C-points of an alge-
braic Drinfeld modular curve XΓ are in bijection with the analytification Xan

Γ , whose points
are defined by the quotient of ΓzΩ Y P1pKq. It is well-known in the subject (see both[Lau96] and
[Gek86]) that the moduli space of rank r Drinfeld modules with Γ level structure is an algebraic
Deligne-Mumford stack. In the rank 2 case we denote this stack, which we will call the (stacky)
Drinfeld modular curve, by XΓ. The cusps of XΓ are the orbits ΓzP1pKq.

Goss establishes in [Gos80] a correspondence between Drinfeld modular forms for a congruence
subgroup Γ and differentials on the modular curve ΓpzΩY P1pKqq. In the same paper, Goss shows

M0pGL2pAqq “
à

kě0

Mk,0pGL2pAqq “ Crg,∆s

for some modular forms g and ∆. Gekeler shows in [Gek88]

MpGL2pAqq “
à

kě0
l pmod q´1q

Mk,lpGL2pAqq “ Crg, hs,

where is the modular form from Goss’ result, and h is another Drinfeld modular form related to
∆. See [Bre16] for an exposition on h.

2.2. My Work on Drinfeld Modular Forms. Because of Goss’ connection between forms and
differentials, the algebra of Drinfeld modular forms may be thought of as a section ring for the sheaf
of differentials as in the classic setting. One might hope to use geometric invariants of (stacky)
Drinfeld modular curves and a program like [VZB22] to compute the section rings and then recover
the algebra of Drinfeld modular forms. Here are some subtleties which complicate this procedure.

First, if we define a log divisor ∆ supported at the cusps of XΓ, then ∆ may be supported at
stacky points. Indeed, the subgroup of upper triangular matrices in Γ, which stabilizes P1pKq, may

contain matrices of form

ˆ

α ˚

0 α1

˙

for some α, α1 P Fˆq , and this group is larger than the generic

stabilizers of points in X formed by matrices

ˆ

α 0
0 α

˙

, where α P Fˆq .

Second, if f PMk,l is a non-zero modular form, then the differential fpdzqbk{2 may not descend
to the modular curve Xan

Γ since the differential is not necessarily Γ-invariant. We have

fpγzqdpγzqbk{2 “ pcz ` dqkpdet γq´l
det γk{2

pcz ` dqk
fpzqdzbk{2

“ pdet γqbl´k{2fdzbk{2,

where since det γ P Fˆq , it need not be that pdet γqbl´k{2 “ 1, unless det γ is the square of some

element in Fˆq . We may get around this problem by considering only Γ with detpγq a square in Fˆq
for all γ P Γ, or by comparing modular forms for a general Γ to the modular forms for Γ2.

My main results in the Drinfeld setting so far are the following:

Theorem 2.2. [Fra23] Let Γ ď GL2pAq be a congruence subgroup containing the diagonal matrices
in GL2pAq and such that detpγq P pFˆq q2 for all γ P Γ. Let ∆ be the (Weil) divisor of cusps of the
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Drinfeld modular curve XΓ with rigid analytic coarse space Xan
Γ “ ΓzpΩ Y P1pKqq. There is an

isomorphism of graded rings

MpΓq – RpXΓ,Ω
1
XΓ
p2∆qq,

where Ω1
XΓ

is the sheaf of differentials on XΓ. The isomorphism is given by isomorphisms

Mk,lpΓq Ñ H0pXΓ,Ω
1
XΓ
p2∆qbk{2q

of components given by f ÞÑ fpdzqbk{2.

Theorem 2.3. [Fra23] Let Γ ď GL2pAq be a congruence subgroup containing the diagonal matrices
in GL2pAq. Let Γ2 “ tγ P Γ : detpγq P pFˆq q2u. Then MpΓq –MpΓ2q, with

Mk,lpΓ2q “Mk,l1pΓq ‘Mk,l2pΓq

on each graded piece, where l1, l2 are the two solutions to k ” 2l pmod q ´ 1q.

Remark 1. If l1, l2 are the two solutions to k ” 2l pmod q´ 1q, then we have Mk,l1pΓq “Mk,l2pΓq.

Theorem 2.4. [Fra23] Let Γ ď GL2pAq be a congruence subgroup. Let Γ1 “ tγ P Γ : detpγq “ 1u.
Suppose that Γ1 ď Γ1 ď Γ for some congruence subgroup Γ1. Then as algebras

MpΓq “MpΓ1q,

and each component Mk,lpΓ
1q is some direct sum of components Mk,l1pΓq for some nontrivial l1.

3. Connections and Future Work

Thanks to the connection between modular forms and differentials, it is possible to compute al-
gebras of Drinfeld modular forms in terms of section rings for divisors on Drinfeld modular curves
in some cases by using geometric invariants of stacks as in [VZB22], [O’D15] and [CFO23]. We
can also make sense of a Deligne-Mumford rigid analytic stacky curve by comparing the theories in
[BN05], [EGH23] and [PY16], so we can pose a series of conjectures regarding their uniforimization
and ultimately perhaps classification in a similar way to [BN05].

There are many Drinfeld modular curves which have higher genera than 0 and 1, and even with
those small genera, many such curves have signatures where existing techniques for computing
section rings cannot give explicit generators and relations for the algebra of modular forms. There
are some existing results which approach Gekeler’s problem, such as Cornelissen’s [Cor97, Theorem
p3.3q], which gives the algebra of modular forms for ΓpαT `βq and we know the algebra of Drinfeld
modular forms for Γ0pT q from [DK23, Theorem p4.4q]. Even by the date of these more recent
papers, the generalization to the algebra of modular forms for Γ0pNq for any level N, all Γ1pNq,
and all higher level (degpNq ě 2) ΓpNq examples seem to be wide open.

Furthermore, our main theorems about the algebra of modular forms for Γ applies to congruence
subgroups containing Γ0pNq since they rely on the hypothesis that Γ contains the diagonal ma-
trices in GL2pAq. Both our assumption and the geometric invariants we observe limit the possible
examples which one can immediately compute. It is worth considering algebras of Drinfeld mod-
ular forms for congruence subgroups Γ1 ď Γ, where Γ1 ď Γ1 ď Γ as in Theorem 2.4. In a similar
vein, algebras of Drinfeld modular forms for SL2pAq and the congruence subgroups of SL2pAq are
accessible and include examples of Drinfeld modules with higher level and higher genera modular
curves thanks to results in [GvdP80].

This indicates several directions for future work on stacks as well. In the computation of section
rings on stacks, one might hope to use the monoid algebras in [VZB22], [O’D15] and [CFO23] to give
more explicit minimal presentations of general n-point Q-divisors on stacky curves of genus 1. This
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theory also ought to give some results for Q-divisors on higher genera curves. Eventually the induc-
tive presentation of the canonical ring for log stacky curves in all genera in the spirit of the main
result from [VZB22] should be generalized to a wider class of stacks such as non-tame cases, though
certainly the combinatorics of the presentation of such rings will vary greatly depending on context.
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