Computing the Canonical Ring of Certain Stacks

Jesse Franklin
University of Vermont

March 18, 2024

Notation

q - a power of an odd prime.
K - the function field of some smooth, connected, projective curve over a field of size q, e.g. \mathbb{P}^{1}

Classical Setting		Function Field
\mathbb{Z}	$A \stackrel{\text { def }}{=} \mathbb{F}_{q}[T]$	
\mathbb{Q}	$K \stackrel{\text { def }}{=} \mathbb{F}_{q}(T)$	
\mathbb{R}	$K_{\infty} \stackrel{\text { def }}{=} \mathbb{F}_{q}\left(\left(\frac{1}{T}\right)\right)$	
\mathbb{C}	$C \stackrel{\text { def }}{=} \widehat{K_{\infty}}$	
$\mathcal{H}=\{a+b i \in \mathbb{C}: b>0\}$		$\Omega \stackrel{\text { def }}{=} C-K_{\infty}$
$\operatorname{SL}_{2}(\mathbb{Z}) \backslash \mathcal{H}$		$\operatorname{GL}_{2}(A) \backslash \Omega$
	$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) z=\frac{a z+b}{c z+d}$	

Elliptic Curves and Drinfeld Modules

Elliptic Curves

An elliptic curve is (analytically) a torus $/ \mathbb{C}$, i.e. a lattice quotient
$\mathbb{C} /(\mathbb{Z} z+\mathbb{Z})$ for $z \in \mathcal{H}$;
or (algebraically) a curve defined by: $E: y^{2}=x^{3}+A(z) x+B(z)$

[Sil09, Figure 3.1]

Drinfeld Modules

Consider the rank 2 lattice
$\Lambda_{z}=\bar{\pi}(z A+A) \subset C$. The associated Drinfeld module of rank 2 is given by
$\varphi^{z}(T)=T X+g(z) X^{q}+\Delta(z) X^{q^{2}}$,
the image of a ring homomorphism $\varphi^{z}: A \rightarrow C\left\{X^{q}\right\}$,
($C\left\{X^{q}\right\}$ is the non-commutative ring of $\mathbb{F}_{q^{-}}$-linear polynomials/C.)

The classical thing we want to analogize

Let $\Gamma \leq \mathrm{PSL}_{2}(\mathbb{R})$ be a Fuchsian group with finite coarea. Let $\mathscr{X}(\Gamma)$ denote the stacky curve over \mathbb{C} which is the algebraization of the compactified orbifold quotient $X=\Gamma \backslash \mathcal{H}^{(*)}$. We know (e.g. [VZB22, Chapter 6])

$$
\begin{aligned}
& M(\Gamma): \stackrel{d e f}{=} \bigoplus_{k \geq 0} M_{k}(\Gamma) \stackrel{\sim}{\longrightarrow} \bigoplus_{k \geq 0} H^{0}\left(\mathscr{X}_{\Gamma}, \Omega_{\mathscr{X}_{\Gamma}}^{1}(\Delta)^{\otimes k / 2}\right) \stackrel{\text { def }}{=} R\left(\mathscr{X}_{\Gamma} ; \Delta\right), \\
& f \mapsto f d z \otimes k / 2
\end{aligned}
$$

[Gek86, page 13]:
in § 4. It would be desirable to have a description by generators and relations, where the generating modular forms should have an elementary interpretation by means of Drinfeld modules. In $\S 5$, the genera of

Why Stacks? What are Stacks?

Modular forms are *always* sections of a line bundle. However,

$$
H^{0}\left(X, L^{\otimes k}\right) \neq M_{k}(\Gamma) \quad \text { and } \quad R(X ; L) \neq M(\Gamma)
$$

where

$$
\begin{cases}X & =\text { moduli scheme } \\ L & =\text { appropriate line bundle } \\ M & =\text { vector space of modular forms. }\end{cases}
$$

So, what are stacks?

1-category	2-category
functor / pre-sheaf	fibered category
separated pre-sheaf	pre-stack
sheaf	stack
algebraic space / scheme	algebraic stack
variety	algebraic stack of finite type over a field

So, what are stacks?

Definition

A stacky curve over an algebraically closed field \mathbb{K} is:

- a smooth, integral, proper, scheme X of dimension 1 , together with
- a finite number of closed points P_{1}, \ldots, P_{r} called stacky points with stabilizer orders $e_{1}, \ldots, e_{r} \in \mathbb{Z}_{\geq 2}$.

Example ([Lau96, Corollary 1.4.3])

The moduli space \mathcal{M}_{A}^{2} of rank 2 Drinfeld modules with no level structure is known to be a Deligne-Mumford algebraic stack of finite type over \mathbb{F}_{p}.

Stacky Curves 101

Let \mathscr{X} denote a stacky curve with signature $\sigma=\left(g ; e_{1}, \ldots, e_{r}\right)$. We say that $D \in \operatorname{Div}(\mathscr{X})$ has

$$
\operatorname{deg}(D)=\operatorname{deg}\lfloor D\rfloor=\operatorname{deg}\left\lfloor\sum_{i} a_{i} P_{i}\right\rfloor \stackrel{\text { def }}{=} \sum_{i}\left\lfloor a_{i}\right\rfloor \pi\left(P_{i}\right),
$$

where $\pi: \mathscr{X} \rightarrow X$ is the coarse space morphism. The (log) canonical ring of $(\mathscr{X} ; \Delta)$ is

$$
R(\mathscr{X} ; \Delta)=\bigoplus_{d \geq 0} H^{0}\left(\mathscr{X}, d\left(K_{\mathscr{X}}+\Delta\right)\right)
$$

where

$$
K_{\mathscr{X}} \sim K_{X}+\left(\sum_{i=1}^{r}\left(1-\frac{1}{e_{i}}\right) P_{i}\right)
$$

is a canonical divisor of \mathscr{X} and $\Delta=\sum_{j} Q_{j} \in \operatorname{Div}(\mathscr{X})$ is a log divisor.

Computing the Canonical Ring of a Stacky Curve

[VZB22] gives an inductive presentation of $R(\mathscr{X})$ for \mathscr{X} with $\sigma=\left(g ; e_{1}, \ldots, e_{r}\right)$ in terms of $R\left(\mathscr{X}^{\prime}\right)$ with $\sigma^{\prime}=\left(g ; e_{1}, \ldots, e_{r-1}\right)$:

Example of (an inductive) presentation of section rings

Example ([CFO24, Example 5.1])

Let X denote a genus 1 curve over some field \mathbb{k}.
[VZB22, Example 5.7.7] Let $D^{\prime}=\frac{1}{2} P_{1}+\frac{1}{2} P_{2}$
[VZB22, Example 5.7.9] Let $D=D^{\prime}+\frac{1}{2} P_{3}=\frac{1}{2} P_{1}+\frac{1}{2} P_{2}+\frac{1}{2} P_{3}$.
By the Generalized Max Noether Theorem [VZB22, Lemma 3.1.4],

$$
H^{0}(X, 2 D) \otimes H^{0}(X,(d-2) D) \rightarrow H^{0}(X, d D)
$$

is surjective for $d>5$, so all generators occur in degree <5.
The minimal presentations have the form

$$
\begin{aligned}
& R_{D}=\mathbb{k}\left[u, x_{1}, x_{2}\right] / I_{D} \\
& R_{D^{\prime}}=\mathbb{k}\left[u, x_{1}, x_{2}^{2}\right] / I_{D^{\prime}},
\end{aligned}
$$

where $I_{D}, I_{D^{\prime}}$ are the relation ideals. In particular, R_{D} is generated over $R_{D^{\prime}}$ by x_{2}.

Old Friends

Example (Goss and Gekeler's famous $\mathrm{GL}_{2}(A)$-forms)

- g of weight $q-1$ and type 0,
- Δ of weight $q^{2}-1$ and type 0 ,
- h of weight $q+1$ and type 1 .
$\bigoplus M_{k, 0}\left(\mathrm{GL}_{2}(A)\right)=C[g, \Delta]$ and
$\bigoplus \quad M_{k, l}\left(\mathrm{GL}_{2}(A)\right)=C[g, h]$.
$k \geq 0$
$I(\bmod q-1)$

Example (Stacky j-line)
$\mathscr{X}_{\mathrm{GL}_{2}(A)} \cong \mathbb{P}^{1}(q-1, q+1)$ is a football (see e.g. [VZB22, 5.3.14]):

But, $R\left(\mathscr{X}_{\mathrm{GL}_{2}(A)}\right) \neq C[g, h]$.

What goes "Wrong" in Function Fields

Among other resources, we have:
$\{$ [Gek01] for signatures of Drinfeld modular curves, and
[[VZB22] for computing canonical rings of stacky curves.
So, where's our modular forms = sections of a line bundle?
We will consider:

- weight and type of Drinfeld modular forms;
- exponentials and u-series;
- special congruence groups $\Gamma \leq \mathrm{GL}_{2}(A)$;
- elliptic points and cusps of Drinfeld modular curves;
- GAGA for rigid analytic stacks.

Drinfeld Modular Forms

Definition

Let $\Gamma \leq \mathrm{GL}_{2}(A)$ be a congruence subgroup. A modular form of weight $k \in \mathbb{Z}_{\geq 0}$ and type $l \in \mathbb{Z} /((q-1) \mathbb{Z})$ is a map $f: \Omega \rightarrow C$ such that

1. f is holomorphic on Ω and at the cusps of Γ;
2. $f(\gamma z)=\operatorname{det}(\gamma)^{-1}(c z+d)^{k} f(z)$ for all $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$.

Lemma ([Gek88, Remark (5.8.i)])

If $M_{k, I}(\Gamma) \neq 0$, then $k \equiv 2 I(\bmod q-1)$.

Proof.

If f is non-zero modular for Γ of weight k and type I then

$$
f\left(\left(\begin{array}{cc}
\alpha & 0 \\
0 & \alpha
\end{array}\right) z\right)=f\left(\frac{\alpha z}{\alpha}\right)=f(z)=\alpha^{k} \alpha^{-2 l} f(z) .
$$

"Fourier series" for Drinfeld Modular Forms

Definition

We define a parameter at infinity

$$
u(z) \stackrel{\text { def }}{=} \frac{1}{e_{\pi A}(\bar{\pi} z)}=\frac{1}{\bar{\pi} e_{A}(z)}=\bar{\pi}^{-1} \sum_{a \in A} \frac{1}{z+a}
$$

Recall:

- $u(\alpha z)=\alpha^{-1} u(z)$ for any $\alpha \in \mathbb{F}_{q}^{\times}$.
- u-series coefficients for a Drinfeld modular form uniquely determine the form.

Lemma

$\frac{d e_{A}(z)}{d z}=1 \Rightarrow \frac{d u}{u^{2}}=-\bar{\pi} d z$, i.e. the differential $d z$ has a double pole at ∞.

Special Congruence Subgroups

Drinfeld modular forms are sensitive to determinants, so consider some "friendlier" modular forms for Breuer and Böckle's special congruence subgroups:
[Bre16] Let $\Gamma_{2} \stackrel{\text { def }}{=}\left\{\gamma \in \Gamma: \operatorname{det}(\gamma) \in(\operatorname{det} \Gamma)^{2}\right\}$.
(Suppose $\operatorname{det} \Gamma_{2}=\left(\mathbb{F}_{q}^{\times}\right)^{2}$.)
[Böckle] Let $\Gamma_{1} \stackrel{\text { def }}{=}\{\gamma \in \Gamma: \operatorname{det}(\gamma)=1\}$. Suppose Γ^{\prime} is such that $\Gamma_{1} \leq \Gamma^{\prime} \leq \Gamma$.

The subgroups Γ_{2} and Γ^{\prime} may be thought of as the inverse image under det: $\mathrm{GL}_{2}(A) \rightarrow \mathbb{F}_{q}^{\times}$of some subgroup of \mathbb{F}_{q}^{\times}.

Cusps and Elliptic Points

Let $\Gamma \leq \mathrm{GL}_{2}(A)$ be a congruence subgroup. Let $X_{\Gamma}^{\text {an }}=\Gamma \backslash\left(\Omega \cup \mathbb{P}^{1}(K)\right)$.

Definition

A cusp of $X_{\Gamma}^{\text {an }}$ is a representative for some orbit $\Gamma \backslash \mathbb{P}^{1}(K)$. A point $e \in X_{\Gamma}^{\text {an }}$ is an elliptic point for Γ if $\operatorname{Stab}_{\Gamma}(e)$ is strictly larger than: $\mathbb{F}_{q}^{\times} \cong\left\{\left(\begin{array}{cc}\alpha & 0 \\ 0 & \alpha\end{array}\right): \alpha \in \mathbb{F}_{q}^{\times}\right\}$.

Example (with thanks to Mihran)

Suppose $x \neq y \in A$ have $\operatorname{deg}(x)=1=\operatorname{deg}(y)$. Consider $\Gamma_{0}(x y) \backslash \mathscr{T}$:

The half-line $\mathrm{GL}_{2}(A) \backslash \mathscr{T}$ (or $\left.\mathrm{SL}_{2}(A) \backslash \mathscr{T}\right)$ [GN95] computes $\Gamma_{0}(x y) \backslash \mathscr{T}$ "layer by layer"

We can "read off" that $\mathscr{X}_{\Gamma_{0}(x y)}$ has 4 cusps.

Cusps are Elliptic Points

Let $\Gamma^{1} \leq \mathrm{SL}_{2}(\mathbb{Z})$. Consider a cartoon of $\Gamma^{1} \backslash\left(\mathcal{H} \cup \mathbb{P}^{1}(\mathbb{Q})\right)$:

Let $\Gamma \leq \mathrm{GL}_{2}(A)$. Consider the moduli $\mathscr{X}_{\Gamma}=\left[X_{\Gamma} / Z\left(G L_{2}(A)\right)\right]$:

$$
\begin{array}{ll}
\operatorname{Aut}(\varphi) \cong \mathbb{F}_{q}^{\times} & / / \mathbb{F}_{q}^{\times} ; \\
\operatorname{Aut}\left(\varphi_{(j=0)}\right) \cong \mathbb{F}_{q^{2}}^{\times} & / / \mathbb{F}_{q}^{\times} ; \\
\operatorname{Aut}\left(\varphi_{(j=\infty)}\right) \cong\left\{\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right)\right\} & / / \mathbb{F}_{q}^{\times} ;
\end{array}
$$

so cusps on a stacky Drinfeld
$\Gamma^{1} \backslash \mathbb{P}^{1}(\mathbb{Q}) \leftrightarrow\binom{$ singular }{ elliptic curves }, modular curve are elliptic points!
but only elliptic curves with $j=0$ or 1728 have extra automorphisms.

Isotropy Groups of Cusps (1/2)

Moduli Interpretation

$\Gamma \backslash \mathbb{P}^{1}(K) \leftrightarrow\left(\begin{array}{c}\text { "degenerate" } \\ \text { Drinfeld modules } \\ \text { of rank 2 }\end{array}\right)$,
$=\binom{$ Drinfeld modules }{ of rank 1}
Carlitz module:

$$
\rho(T)=T X+X^{q} \longleftrightarrow \bar{\pi} A \subset \Omega,
$$

where $\bar{\pi} \in K_{\infty}(\sqrt[q-1]{-T})$.

$$
\operatorname{Aut}(\rho) \cong \mathbb{F}_{q}^{\times},
$$

"extra" automorphisms specify $\bar{\pi}$.

Gekeler's Isotropy

It is well-known that ∞ (resp. any cusp of Γ) is stabilized by matrices of form:

$$
\left\{\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)=\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right)\left(\begin{array}{cc}
1 & m \\
0 & 1
\end{array}\right) \in \Gamma\right\},
$$

which is an infinite group.
Question: where does this infinite group of translations $\left(\begin{array}{cc}1 & m \\ 0 & 1\end{array}\right)$ go?

Isotropy Groups of Cusps (2/2)

Ω
Figure 2.3. The fundamental domain for $\mathrm{SL}_{2}(\mathbf{Z})$

$\mathscr{T}(\mathbb{R})$

Figure 2.4. Some $\mathrm{SL}_{2}(\mathbf{Z})$-translates of \mathcal{D}

Elliptic Points on Stacky Curves

Example (Classical j-line)

- $X(1)=\mathrm{SL}_{2}(\mathbb{Z}) \backslash\left(\mathcal{H} \cup \mathbb{P}^{1}(\mathbb{Q})\right)$ the "usual" j-line $\mathbb{P}^{1}(\mathbb{C})$
- $\overline{\mathcal{M}_{1,1}}$ - DM stack representing the moduli of stable elliptic curves
$\overline{\mathcal{M}_{1,1}}$ is a μ_{2}-gerbe over
$\mathscr{X}(1)=\left[X(1) / Z\left(\mathrm{SL}_{2}(\mathbb{Z})\right)\right]$, i.e.
$\mathscr{X}(1)$ is a rigidification $\overline{\mathcal{M}_{1,1}} / / \mu_{2}$:

$$
\overline{\mathcal{M}_{1,1}} \xrightarrow{\pi} \mathscr{X}(1) \rightarrow X(1)
$$

$$
\mathbb{P}^{1}(4,6) \xrightarrow{\pi} \mathbb{P}^{1}(2,3) \rightarrow \mathbb{P}^{1}(\mathbb{C})
$$

Example (Drinfeld j-line)

$$
\cdot X(1)=\mathrm{GL}_{2}(A) \backslash\left(\Omega \cup \mathbb{P}^{1}(K)\right)-
$$ the "usual" j-line $\mathbb{P}^{1}(C)$

- $\overline{\mathcal{M}_{A}^{2}}$ - (DM stack) moduli of stable rank 2 Drinfeld modules (no level structure)
$\overline{\mathcal{M}_{A}^{2}}$ is a μ_{q-1}-gerbe over
$\mathscr{X}(1)=\left[X(1) / Z\left(\mathrm{GL}_{2}(A)\right)\right]$, i.e.
$\mathscr{X}(1)$ is a rigidification $\overline{\mathcal{M}}_{A}^{2} / / \mu_{q-1}$:

$$
\overline{\mathcal{M}_{A}^{2}} \xrightarrow{\pi} \mathscr{X}(1) \rightarrow X(1)
$$

$$
\begin{aligned}
& \mathbb{P}^{1}\left((q-1)^{2}, q^{2}-1\right) \xrightarrow{\pi} \\
& \rightarrow \mathbb{P}^{1}(q-1, q+1) \rightarrow \mathbb{P}^{1}(C)
\end{aligned}
$$

Rigid Stacky GAGA

Theorem

Let A be a k-affinoid algebra, for k some non-achimedean field. ([PY16, Lemma 7.2]) Let \mathscr{X} be an algebraic stack locally of finite presentation over $\operatorname{Spec}(A)$. Suppose that for $\mathcal{F} \in \mathcal{O}_{\mathscr{X}}-\operatorname{Mod}$ we have

$$
\mathcal{F} \cong \lim _{\tau \geq-n} \mathcal{F}
$$

Then the analytification functor $(-)^{\text {an }}$ commutes with this limit. ([PY16, Theorems 7.4 and 7.5]) Let \mathscr{X} be a proper algebraic stack over $\operatorname{Spec}(A)$. The analytification functor on coherent sheaves induces an equivalence of categories

$$
\operatorname{Coh}(\mathscr{X}) \stackrel{\cong}{\leftrightarrows} \operatorname{Coh}\left(\mathscr{X}^{a n}\right)
$$

Geometry of Drinfeld Modular Forms $(1 / 3)$

Let q be odd;
Let $\Gamma \leq \mathrm{GL}_{2}(A)$;
Let $\Gamma_{2}=\left\{\gamma \in \Gamma: \operatorname{det}(\gamma) \in\left(\mathbb{F}_{q}^{\times}\right)^{2}\right\}$.
Consider the cover of modular curves

Theorem ([Fra23, 6.1])

There is an isomorphism of graded rings

$$
M\left(\Gamma_{2}\right) \cong R\left(\mathscr{X}_{\Gamma_{2}} ; \Omega_{\mathscr{X}_{\Gamma_{2}}}^{1}(2 \Delta)\right)
$$

given by isomorphisms

$$
M_{k, l}\left(\Gamma_{2}\right) \rightarrow H^{0}\left(\mathscr{X}_{\Gamma_{2}}, \Omega_{\mathscr{X}_{\Gamma_{2}}}^{1}(2 \Delta)^{\otimes k / 2}\right)
$$

When we compute the log canonical ring $R\left(\mathscr{X}_{\Gamma_{2}} ; 2 \Delta\right)$ we get the following

$$
\text { of form } f \mapsto f(d z)^{\otimes k / 2} \text {, where }
$$ result.

$$
k \equiv 2 /(\bmod q-1)
$$

Geometry of Drinfeld Modular Forms (2/3)

Let q be odd;
Let $\Gamma \leq \mathrm{GL}_{2}(A)$;
Let $\Gamma_{2}=\left\{\gamma \in \Gamma: \operatorname{det}(\gamma) \in\left(\mathbb{F}_{q}^{\times}\right)^{2}\right\}$.
Consider the cover of modular curves

$$
\begin{gathered}
\mathscr{X}_{\Gamma_{2}} \\
\stackrel{\downarrow}{\mathscr{X}_{\Gamma}}
\end{gathered}
$$

Theorem ([Fra23, 6.2])
We have $M(\Gamma) \cong M\left(\Gamma_{2}\right)$, with

$$
M_{k, I}\left(\Gamma_{2}\right)=M_{k, l_{1}}(\Gamma) \oplus M_{k, l_{2}}(\Gamma)
$$

on each component, where I_{1}, l_{2} are the solutions to $k \equiv 2 /(\bmod q-1)$.

When we compare the modular forms for Γ and Γ_{2} we find the following.

Geometry of Drinfeld Modular Forms (3/3)

Let q be odd;
Let $\Gamma \leq \mathrm{GL}_{2}(A)$;
Let $\Gamma_{1}=\{\gamma \in \Gamma: \operatorname{det}(\gamma)=1\}$.
Suppose that $\Gamma_{1} \leq \Gamma^{\prime} \leq \Gamma$.
Consider the cover of modular curves

$$
\begin{aligned}
& \text { Theorem }([\text { Fra23, } 6.12]) \\
& \text { We have } M(\Gamma) \cong M\left(\Gamma^{\prime}\right) \text {, and each } \\
& \text { component } M_{k, I^{\prime}\left(\Gamma^{\prime}\right) \text { is some direct }}^{\text {sum of components } M_{k, I^{\prime}}(\Gamma) \text { for }} \\
& \text { some nontrivial } I^{\prime} .
\end{aligned}
$$

When we compare the modular forms for Γ and Γ^{\prime} we find the following generalization of [Fra23, Theorem $6.2]$.

Conclusion

Thank you!

Further details available at arXiv:2310.19623

and at arXiv:2312.15128

References I

图 Florian Breuer, A note on Gekeler's h-function, Arch. Math. (Basel) 107 (2016), no. 4, 305-313. MR 3552209
(Michael Cerchia, Jesse Franklin, and Evan O'Dorney, Section rings of \mathbb{Q}-divisors on genus 1 curves, 2024, https://arxiv.org/abs/2312.15128.
圊 Jesse Franklin, The geometry of Drinfeld modular forms, 2023, https://arxiv.org/abs/2310.19623.
Ernst-Ulrich Gekeler, Drinfeld modular curves, Lecture Notes in Mathematics, vol. 1231, Springer-Verlag, Berlin, 1986. MR 874338
, On the coefficients of Drinfeld modular forms, Invent. Math. 93 (1988), no. 3, 667-700. MR 952287

References II

\qquad , Invariants of some algebraic curves related to Drinfeld modular curves, J. Number Theory 90 (2001), no. 1, 166-183. MR 1850880
Gérard Laumon, Cohomology of Drinfeld modular varieties. Part I, Cambridge Studies in Advanced Mathematics, vol. 41, Cambridge University Press, Cambridge, 1996, Geometry, counting of points and local harmonic analysis. MR 1381898

國 Mauro Porta and Tony Yue Yu, Higher analytic stacks and GAGA theorems, Adv. Math. 302 (2016), 351-409. MR 3545934

围 Joseph H. Silverman, The arithmetic of elliptic curves, second ed., Graduate Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009. MR 2514094

References III

目 John Voight and David Zureick-Brown, The canonical ring of a stacky curve, Mem. Amer. Math. Soc. 277 (2022), no. 1362, v+144. MR 4403928

