Geometry of Drinfeld Modular Forms

Jesse Franklin
University of Vermont
Dartmouth-UVM Math Day, 2024

The Drinfeld Setting

q - a power of an odd prime.
K - the function field of some smooth, connected, projective curve over a field of characteristic q, e.g. \mathbb{P}^{1}

Classical Setting		Function Field
\mathbb{Z}	$A \stackrel{\text { def }}{=} \mathbb{F}_{q}[T]$	
\mathbb{Q}		$K \stackrel{\text { def }}{=} \operatorname{Frac}(A)=\mathbb{F}_{q}(T)$
\mathbb{R}	$K_{\infty} \stackrel{\text { def }}{=} \mathbb{F}_{q}\left(\left(\frac{1}{T}\right)\right)$	
\mathbb{C}	$C \stackrel{\text { def }}{=} \widehat{K_{\infty}}$	
$\mathcal{H}=\{a+b i \in \mathbb{C}: b>0\}$		$\Omega \stackrel{\text { def }}{=} C-K_{\infty}$
$\operatorname{SL}_{2}(\mathbb{Z}) \backslash \mathcal{H}$		$\operatorname{GL}_{2}(A) \backslash \Omega$
	$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) z=\frac{a z+b}{c z+d}$	

Elliptic Curves and Drinfeld Modules

Elliptic Curves

An elliptic curve is (analytically) a torus $/ \mathbb{C}$, i.e. a lattice quotient $\mathbb{C} /(\mathbb{Z} z+\mathbb{Z})$ for $z \in \mathcal{H}$; or (algebraically) a curve defined by: $E: y^{2}=x^{3}+A(z) x+B(z)$

Drinfeld Modules
Consider the rank 2 lattice
$\Lambda_{z}=\bar{\pi}(z A+A) \subset C$. The associated Drinfeld module of rank 2 is given by

$\varphi^{z}(T)=T X+g(z) X^{q}+\Delta(z) X^{q^{2}}$,
the image of a ring homomorphism $\varphi^{z}: A \rightarrow C\left\{X^{q}\right\}$ where $C\left\{X^{q}\right\}$ is the non-commutative ring of $\mathbb{F}_{q^{-}}$linear polynomials/ C.
[Sil09, Figure 3.1]

Moduli Problems

Let $\Gamma^{1} \leq \mathrm{SL}_{2}(\mathbb{Z})$ and $\Gamma \leq \mathrm{GL}_{2}(A)$ be subgroups.
$\binom{$ quotient spaces }{$\Gamma^{1} \backslash \mathcal{H}($ resp. $\Gamma \backslash \Omega)} \stackrel{\text { classify }}{\leftrightarrow}\left(\begin{array}{c}\text { families of elliptic curves } \\ \text { (resp. Drinfeld modules of rank 2) } \\ \text { which have torsion info }\end{array}\right)$

For example,

$$
\Gamma_{0}(N): \stackrel{d e f}{=}\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): c \equiv 0 \quad(\bmod N)\right\}
$$

corresponds to the moduli space of

$$
\left\{\begin{array}{l}
\text { elliptic curves } \\
\text { Drinfeld modules of rank } 2
\end{array}\right.
$$

with an N-torsion subgroup.

Classical Modular Forms \& Curves

Algebraic Modular Curve \mathscr{X}_{Γ}
Deligne-Mumford (stacky) curve

Analytic Moduli Space $\Gamma \backslash \mathcal{H}^{*}$
Compact Riemann surface (orbifold)

Definition ([DS05, 1.1.2])

A map $f: \mathcal{H} \rightarrow \mathbb{C}$ is a modular form of weight $k \in \mathbb{Z}$ for $\Gamma \leq \mathrm{SL}_{2}(\mathbb{Z})$ if 1. f is holomorphic on \mathcal{H} and at cusps of Γ; and 2. $f(\gamma z)=(c z+d)^{k} f(z)$ for all $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$ and $z \in \mathcal{H}$.

We know (e.g. [VZB22, Chapter 6])

$$
\begin{aligned}
& M(\Gamma): \stackrel{d e f}{=} \bigoplus_{k \geq 0} M_{k}(\Gamma) \stackrel{\sim}{\longrightarrow} \bigoplus_{k \geq 0} H^{0}\left(\mathscr{X}_{\Gamma}, \Omega_{\mathscr{X}_{\Gamma}}^{1}(\Delta)^{\otimes k / 2}\right) \stackrel{\text { def }}{=} R\left(\mathscr{X}_{\Gamma}, \Delta\right), \\
& f \mapsto f d z^{\otimes k / 2}
\end{aligned}
$$

"Ingredients"

1. (Log) Stacky Curve $(\mathscr{X}, \Delta)([$ LRZ16, Def 2.1] and [VZB22, Ch 4])

- a "nice" scheme $X / \overline{\mathbb{K}}$ of dimension 1 , together with "fractional" (stacky) points $\frac{1}{e_{1}} P_{1}, \ldots, \frac{1}{e_{r}} P_{r}$ of X with $e_{i} \in \mathbb{Z}_{\geq 2}$;
- a log divisor is some $\Delta \in \operatorname{Div}(\mathscr{X})$ a sum of distinct points of \mathscr{X}

2. (Ample) Line Bundle

- e.g. $K_{\mathscr{X}} \sim \Omega_{\mathscr{X}}^{1}$ or $K_{\mathscr{X}}+\Delta$
- gives an embedding of \mathscr{X} in projective space

3. Modular forms " $=$ " Sections - à la $\left(f \mapsto f d z^{\otimes k / 2}\right)$
4. GAGA - equivalences of categories:

$$
\binom{\text { algebraic }}{\text { curves and bundles }} \cong \xlongequal{\Im}\binom{\text { analytic }}{\text { curves and bundles }}
$$

Drinfeld Modular Forms \& Curves

Algebraic Modular Curve $\begin{array}{ll}\mathscr{X}_{\Gamma} & \text { rigid (stacky) GAGA } \\ \leftrightarrow\end{array}$

Analytic Moduli Space
$\Gamma \backslash\left(\Omega \cup \mathbb{P}^{1}(K)\right)$
compact rigid analytic stack

Definition ([Gek86, (3.1)])

Let $\Gamma \leq \mathrm{GL}_{2}(A)$ be a congruence subgroup. A modular form of weight $k \in \mathbb{Z}_{\geq 0}$ and type $I \in \mathbb{Z} /((q-1) \mathbb{Z})$ is a holomorphic function $f: \Omega \rightarrow C$ such that

1. f is holomorphic on Ω and at the cusps of Γ; and
2. $f(\gamma z)=\operatorname{det}(\gamma)^{-I}(c z+d)^{k} f(z)$ for all $\gamma=\left(\begin{array}{ll}a & b \\ c & b\end{array}\right) \in \Gamma$.

Geometry of Drinfeld Modular Forms $(1 / 3)$

Let q be odd;
Let $\Gamma \leq \mathrm{GL}_{2}(A)$;
Let $\Gamma_{2}=\left\{\gamma \in \Gamma: \operatorname{det}(\gamma) \in\left(\mathbb{F}_{q}^{\times}\right)^{2}\right\}$.
Consider the cover of modular curves

Theorem ([Fra23, 6.1])

There is an isomorphism of graded rings

$$
M\left(\Gamma_{2}\right) \cong R\left(\mathscr{X}_{\Gamma_{2}}, \Omega_{\mathscr{X}_{\Gamma_{2}}}^{1}(2 \Delta)\right)
$$

given by isomorphisms

$$
M_{k, l}\left(\Gamma_{2}\right) \rightarrow H^{0}\left(\mathscr{X}_{\Gamma_{2}}, \Omega_{\mathscr{X}_{\Gamma_{2}}}^{1}(2 \Delta)^{\otimes k / 2}\right)
$$

When we compute the log canonical ring $R\left(\mathscr{X}_{\Gamma_{2}}, 2 \Delta\right)$ we get the following result.
of form $f \mapsto f(d z)^{\otimes k / 2}$, where $k \equiv 2 l(\bmod q-1)$.

Geometry of Drinfeld Modular Forms (2/3)

Let q be odd;
Let $\Gamma \leq \mathrm{GL}_{2}(A)$;
Let $\Gamma_{2}=\left\{\gamma \in \Gamma: \operatorname{det}(\gamma) \in\left(\mathbb{F}_{q}^{\times}\right)^{2}\right\}$.
Consider the cover of modular curves

$$
\begin{gathered}
\mathscr{X}_{\Gamma_{2}} \\
\downarrow \\
\mathscr{X}_{\Gamma}
\end{gathered}
$$

Theorem ([Fra23, 6.2])
We have $M(\Gamma) \cong M\left(\Gamma_{2}\right)$, with

$$
M_{k, l}\left(\Gamma_{2}\right)=M_{k, l_{1}}(\Gamma) \oplus M_{k, l_{2}}(\Gamma)
$$

on each component, where I_{1}, l_{2} are the solutions to $k \equiv 2 /(\bmod q-1)$.

When we compare the modular forms for Γ and Γ_{2} we find the following.

Geometry of Drinfeld Modular Forms (3/3)

Let q be odd;
$\Gamma \leq \mathrm{GL}_{2}(A)$;
$\Gamma_{1}=\{\gamma \in \Gamma: \operatorname{det}(\gamma)=1\}$.
Suppose that $\Gamma_{1} \leq \Gamma^{\prime} \leq \Gamma$.
Consider the cover of modular curves

Theorem ([Fra23, 6.12])

We have $M(\Gamma) \cong M\left(\Gamma^{\prime}\right)$, and each component $M_{k, l}\left(\Gamma^{\prime}\right)$ is some direct sum of components $M_{k, l^{\prime}}(\Gamma)$ for some nontrivial I'.

When we compare the modular forms for Γ and Γ^{\prime} we find the following generalization of [Fra23, Theorem $6.2]$.

Conclusion

Thank you!
Further details available at arXiv:2310.19623

References I

目 Fred Diamond and Jerry Shurman，A first course in modular forms， Graduate Texts in Mathematics，vol．228，Springer－Verlag，New York， 2005．MR 2112196
围 Jesse Franklin，The geometry of Drinfeld modular forms，2023， https：／／arxiv．org／abs／2310．19623．

Ernst－Ulrich Gekeler，Drinfeld modular curves，Lecture Notes in Mathematics，vol．1231，Springer－Verlag，Berlin，1986．MR 874338
囦 Aaron Landesman，Peter Ruhm，and Robin Zhang，Spin canonical rings of log stacky curves，Ann．Inst．Fourier（Grenoble） 66 （2016）， no．6，2339－2383．MR 3580174
Joseph H．Silverman，The arithmetic of elliptic curves，second ed．， Graduate Texts in Mathematics，vol．106，Springer，Dordrecht， 2009. MR 2514094

References II

目 John Voight and David Zureick-Brown, The canonical ring of a stacky curve, Mem. Amer. Math. Soc. 277 (2022), no. 1362, v+144. MR 4403928

