

EROI at different analysis boundaries and Net energy (services) long-term trend of UK

4th Biophysical Economics Conference Burlington, Vermont October 26, 2012

Carey King, Ph.D.

(careyking@mail.utexas.edu) Center for International Energy and Environmental Policy

Two topics on net energy measures

- Gross and Net Energy Ratios (GER, NER) of economy as system boundary expands
 - Mimic Costanza and Herendeen (1980, 1984) to calculate energy intensities
 - Use energy intensities to calculate GER and NER of economy
- Energy Intensity Ratio (EIR) of long-term time series of UK energy and energy services
 - 1500 to 2000
 - EIR is proxy for net energy ratio (= EROI 1)
 - Roger Fouquet (2008) Heat, Power, and Light

GER and NER of energy as boundary of analysis expands

Net energy ratios can be calculated based on energy intensities, ε

$$\vec{\varepsilon}X + \vec{E}_{earth} = \vec{\varepsilon}\hat{X}$$

such that
$$\vec{\varepsilon} = \vec{E}_{earth} \left(\hat{X} - X\right)^{-1}$$

- X = transactions matrix
 - can have units of energy for energy sectors
- Xhat = diagonal of gross production each sector
- ε = vector of energy intensities
 - "Gross energy extracted/Net energy output"
 - **E**_{earth} = gross energy extraction

Net energy ratios can be calculated based on energy intensities, ε

• With *ε* = "Gross energy extracted/Net energy output"

Gross Energy Ratio (GER)

Assume process information with oil, NG, and "other" sectors

Assume process information with oil, NG, and "other" sectors

Each energy intensity represents a slightly different interpretation for net energy

Each energy intensity represents a slightly different interpretation for net energy

Carey King 4th Biophysical Economics 9 October 26, 2012

Energy return ratios (ERRs) are most meaningful when considering total gross primary energy production

ERRs considering *TOTAL* gross primary energy extraction

ERRs considering ONE type gross primary energy

ERR	Equation	Value	ERR	Equation	Value
GER Primary energy Net oil	$\frac{\varepsilon_{1,1}+\varepsilon_{2,1}}{\varepsilon_{1,1}+\varepsilon_{2,1}-1}$	8.75	OFP Grov oil	$\frac{\varepsilon_{1,1}}{\varepsilon_{1,1}+\varepsilon_{2,1}-1}$	8.04
NER Primary energy Net oil	$\frac{1}{\varepsilon_{1,1}+\varepsilon_{2,1}-1}$	7.75	NER Cross oil Net oil	$\frac{1}{\varepsilon_{1,1}+\varepsilon_{2,1}-1}$	7.75
GER Primary energy Net refined oil	$\frac{\varepsilon_{1,2}+\varepsilon_{2,3}}{\varepsilon_{1,3}+\varepsilon_{2,2}-1}$	KY	GER <u>Gross oil</u> Net refined oil	$\frac{\varepsilon_{1,3}}{\varepsilon_{1,3}+\varepsilon_{2,3}-1}$	3.90
NER Primary energy Net refined oil	$\overline{\varepsilon_{1,3}} + \overline{\varepsilon_{2,3}} + \overline{1}$	3.52	NER Gross oil Net refined oil	$\frac{1}{\varepsilon_{1,3}+\varepsilon_{2,3}-1}$	3.53
GER Primary energy Net NG	$\frac{\varepsilon_{2,2}+\varepsilon_{1,2}}{\varepsilon_{2,2}+\varepsilon_{1,2}-1}$	8.64	GER Gross NG Net NG	$\frac{\varepsilon_{2,2}}{\varepsilon_{2,2}+\varepsilon_{1,2}-1}$	7.97
NER Primary energy Net NG	$\frac{1}{\varepsilon_{2,2}+\varepsilon_{1,2}-1}$	7.64	NER Gross NG Net NG	$\frac{1}{\varepsilon_{2,2}+\varepsilon_{1,2}-1}$	7.64
GER Primary energy	$\frac{\varepsilon_{2,4}+\varepsilon_{1,4}}{\varepsilon_{2,4}+\varepsilon_{1,4}-1}$	6.49	GER Gross NG Net distributed NG	$\frac{\varepsilon_{2,4}}{\varepsilon_{2,4}+\varepsilon_{1,4}-1}$	5.97
NER Primary energy Net distributed NG	$\frac{1}{\varepsilon_{2,4}+\varepsilon_{1,4}-1}$	5.49	NER Gross NG Net distributed NG	$\frac{1}{\varepsilon_{2,4}+\varepsilon_{1,4}-1}$	5.49

The limiting case of EROI = 1 (GER = 1) is the same as saying GDP = 0

VIE

 Previous GER and NERs assume nonzero demand

- At zero deinand ...
 - Energy intensities are infinite
 - GER = 1 and NER 0 for each energy resource
 - Equivalent to saying GDP = 0

d =

0.84

Think about expanding boundary from normal economic I-O formulation

 Same concept as Costanza and Herendeen (1980, 1984)

Carey King 4th Biophysical Economics 12 October 26, 2012

Imagine a simple example 2-sector economy (1 energy sector, 1 'other' sector)

Finding the ratio of energy price to 'other' price, you can solve for ERRs from ε in units of 'energy/\$'

Assuming a constant demand, we can draw price vs. NER (or GER) curve

Cal Economics 15 October 26, 2012

Capital intensive energy is more expensive at equal EROI

pnysical Economics 16 October 26, 2012

Energy Intensity Ratio (proxy EROI) of UK time series: 1500-2000

The Energy Intensity Ratio (EIR): a NER proxy using energy prices

- EIR = ("Btu/\$" of fuel) / ("Btu/\$" of economy) ~ E_{out}/E_{in}
 - "What is the cost of providing energy to the economy relative to the average productivity from consuming energy?"
- Example (using US 2008 values in \$2008):
 - Oil at \$100/BBL → 57,000 Btu/\$2008
 - US economy: 6,960 Btu/\$2008 GDP
 - EIR_{oil, price} = 57,000/6,960 = 8.3

King, C. W. (2010) Environmental Research Letters. (EIA, AER for 2009 and 2010)

Carey King 4th Biophysical Economics October 26, 2012

October 26, 2012

UK EIR based upon energy purchased per service

King mics 21 2012

UK EIR based upon energy service itself

- Transportation = [passenger·km/\$] / [energy/GDP]
- Power = [energy/\$] / [energy/GDP]
 Power ~ useful work (animal work, electricity)
- Heat = [energy/\$] / [energy/GDP]
- Light = [lumens/\$] / [energy/GDP]

UK EIR based upon energy service itself

mics 23

EIR_{service} / EIR_{energy} = (£/energy) / (£/service) increasing trend indicates benefits from investments in enduse technology & efficiency relative to energy investment

24

Data from Fouquet, R. (2008) Heat, Power, and Light: Revolutions in Energy Services.

Energy and food expenditures have decreased for centuries

Carey King Sical Economics 26 October 26, 2012

Food was the early energy supply ... for human and animal power

Carey King Sical Economics 27 October 26, 2012

'Food + energy' expenditures are relevant for long-term analysis

mics 28

http://www.beg.utexas.edu/gccc/

CENTER FOR INTERNATIONAL ENERGY AND ENVIRONMENTAL POLICY

http://www.jsg.utexas.edu/cieep

WEBBER ENERGY GROUP

http://www.webberenergygroup.com

Carey King careyking@mail.utexas.edu