Fluvial Processes and Morphology:

- Landscapes and Drainage basins
- Driving and resisting forces
- Energy and work in river channels
- Spatial and Temporal Scales
- Thresholds
- River taxonomy and flow patterns
- Streams in equilibrium
- Streams in disequilibrium

The Simple Big Picture:

Any Landscape is divided into hydrologic Units - drainage basins:

We can consider fluvial processes At a number of spatial and temporal scales:

The Drainage System:

4 ways we're going to consider river channels

4. Channel and Drainage System Change Through Time:

- X-section: bank erosion and deposition channel migration:
- X-section: channel bed incision vs. aggradation:
- •Plan-view: changes in drainage pattern through time:
- Long-Profiles: changes through glacial-interglacial and geologic
 Time. Fluvial Terraces our keys to the past...
- Human-Landscape Interactions: effects of land-use change on Fluvial systems:
- Effects of Changing Climate on hillslope and fluvial processes.

Where to Start?

1 - Water

2- Energy

The Water:

- Solar Forcing drives the hydrologic cycle.
- Provided Precipitation and water to hillslopes and River channels.

The Energy:

Driving Force: $PE = mgh \sim \Delta h$

- Gravity responsible for the movement of water down Gradient
- Tectonics maintains gradient and height.

Resisting Forces:

- •Channel Properties: Width-depth relationships Lithology
- Bank and Bed roughness
- Vegetation
- Erosion and transportation
 Of sedment.

Turbulent Flow:

 Majority of Energy in the system is dissipated through turbulence caused by Channel irregularities.

 Remaining energy goes into the Erosion and Transportation of Sediment.

Hujlstrom Diagram:

Particle Entrainment:

Modes of Sediment Transport

- Suspended Load
- Bed Load
 - Sliding
 - Rolling
 - Saltating
- Dissolved Load

Note Bedload bashing

Essentially, we're talking about thresholds:

 Minimum amount of energy required to make something move, or to cause erosion in Alluvial Channels.

Bedrock Channels And Thresholds:

 $e = KA^mS^n$

Very different
 Erosional processes

(entrainment vs. detachment and abrasion)

 Big changes only happen In low-frequency
 High-magnitude events

(Huge Floods)

Zoom out a little bit.

River channel and flow patterns

Basic Taxonomy:

In actuality, divisions are not that distinct, and channel form can vary greatly over different spatial scales.

Braided Channels - Multi strand:

- Typically wide with many diverging and converging innerchannels. Migrating bars.
- Need a large sediment source erodible banks or unstable hillslopes.
- Rapid fluctuations in Q, erosion and deposition. Discourages vegetation growth and bar stabilization.
- Most material transported as bedload.
- Braided sections typically steeper than adjacent unbraided sections.
- Shallow, turbulent water more capable of moving coarse bedload.

Straight and Meandering Channels - Single strand

Rivers do not like to be straight

Given time, they wander

Meandering Channels - Anatomy

River Sinuosity:

$$Sinuosity = \frac{L_c}{L_v}$$

- Very Qualitative: Rivers with S > 1.5 are said to be sinuous
- Provides a means of comparison between rivers from different Locations, tectonic environments or climatic regions.

Meander Migration

Why does this happen?

Need to consider flow in 3 dimensions:

Plan View:

- Flow non-uniform across channel
- Fastest along outside bank (cut)
- Slowest along interior bank (point bar)

Cross-section:

- Flow fastest just below surface
- Slowest at the channel perimeter
- Average Velocity = 0.6 depth
- ·Important for next weeks lab.

Need to consider flow in 3 dimensions:

Profile View:

- •At Low Flow: Pools (slow flowing water) separated by riffles (rapid flow).
- At High flow: Velocity reversal. Rapid water scours pools thus maintaining bed morphology.

Helical Flow:

Thalweg - deepest part of channel Migrates back and forth across meander pools and riffles

Corkscrew Circulation - Erodes and undercuts banks Resulting in the slow steady migration of meanders.

Net result - over time, meandering channels rework Entire floodplain.

Stream Equilibrium Conditions:

All rivers strive to maintain a balance between:

- 1 Driving and Resisting Forces
- 2 The amount and size of sediment supplies to them
 - 3 substrate they are trying to erode through

Very Scale Dependent Concept!

System Equilibrium - Ideal Conditions

Basin area relationships

Remember - Depends on scale.

- Precipitation / Discharge essentially random
 For any given climate regiem
- Erosion and deposition at small scales
- Over longer time periods and larger spatial Scales, a system remains adjusted to:
 - Range of discharges
 - Range of sediment loads
- Does this by tweaking hydraulic variables

Quasi-Equilirum Conditions

What happens when something big changes?

Cross a Threshold:

Rapidly Uplifting Terrain or Faulting along river

Narrow Gorges reflect disequilibrium
 And river's inability to keep up with
 Uplift

Seen as knickzones in Long-profile

What about changing Climate

Glacial / Interglacial cycles
And River incision through bedrock

What about changing Climate

Human Landuse / Cover Conditions:

On Wednesday: Canoe trip down the Winooski

Where to meet:

Here - quick GPS introduction.

To Bring:

- ·Weather looks good, but bring rain gear just incase.
- Water shoes
- Pencil
- Sunscreen and funny hat
- Digital camera if you have one.

Laminar Flow:

Particles of water travel parallel to one another and never cross paths.

Doesn't actual exist!

Yet most most flow equations

Are based on the principles of

Laminar flow.