Shape descriptions

- Different ways to describe the appearance of a crystal or aggregation of crystals not necessarily related to symmetry (though some are a result of that). Table 3.2 in the text – will see in lab
 - Equant, blocky, acicular, tabular or platy, capillary of filiform, bladed, prismatic or columnar, foliated or micaceous
 - Massive, granular, radiating, fibrous, stalactitic, lamellar or tabular, stellated, plumose, dendritic, reticulated, colloform or globular, botryoidal, reniform, mammary, drusy, elliptic or pisoltic

Shape - from breaking

- Cleavage as we learned, the regular arrangement of atoms results in planes, some of which may be structurally weaker and result in cleavage planes or surfaces
 - Generally described as basal, cubic, octahedral, prismatic
- Fracture the breaking of a crystal is not related to a plane of atoms in the lattice
- Different types of fracture
 - Even, uneven or irregular, hackly, splintery, fibrous, conchoidal

Color = light - light absorbed

- White light is one part of the full spectrum of particle energy
- Color develops in any material because one part of the spectrum is absorbed more than another part

ROYGBIV

λ, nm

Color = light - light absorbed

- What wavelength of light/ particle gets absorbed?
- Energy= 1/λ
 − Higher E transition
 → redder

Absorbance

- The absorbance of a mineral (or any material for that matter) can be measured using any wavelength → materials often have very distinct absorbances, why?
- Ions making up certain minerals may be similar, but the bonding and spatial arrangement are different
- Different ions coordinated to other ions in different ways (vary bond order, length, geometry, type) will absorb energy differently

Color in Minerals

- Idiochromatic color is derived from the main constituents making up the mineral, changes in color then indicate significant changes in composition and structure
- Allochromatic color is derived from minor or trace ions (present in small amounts)
 - Chromophores are ions which absorb light in visible wavelengths quite strongly

Transition metals are often good chromophores →d-orbitals absorb very well in the visible spectrum

Mineral color (impurity)

- Quartz is obviously allochromatic
 - Rose Quartz \rightarrow Fe

Gemstone	Color	Host crystal	Impurity
Ruby	Red	Aluminum oxide (Corundum)	Chromium
Emerald	Green	Beryllium aluminosilicate (Beryl)	Chromium
Garnet	Red	Calcium aluminosilicate	Iron
Topaz	Yellow	Aluminum fluorosilicate	Iron
Tourmaline	Pink-red	Calcium lithium boroaluminosilicate	Manganese
Turquoise	Blue-green	Copper phosphoaluminate	Copper

Same Ion, different color?

 Coordination of the ion can change the energy between stable and excited states (photon emission from this splitting determines absorbance and thus color)

Staurolite is idiochromatic

- Fe gives staurolite its brown color
- Staurolite formula is Fe₂Al₉Si₄O₂₃(OH)

Rhodochrosite is idiochromatic

- Mn gives rhodochrosite its cherry red color
- Rhodochrosite formula is MnCO₃

Same ion, structure – different color??

- Remember defects?
- Defects are parts of the mineral structure where a 'foreign' ion comes in, or where the major ions are simply misfit
- Radiation can also cause defects, or changes in the bonding environment
- Any change in bonding environment can result in a different color

Luster

- Sheen the WAY in which the mineral reflects light...
- When a particle reflects, interaction can change appearance → luster
- Metallic minerals reflect more light surface is denser with electrons – some rays reflect totally, other absorb or transmit through

Types of luster

- Vitreous glassy appearsance
- Resinous looks like resin
- Greasy interference creates more than one color reflection (oil on water)
- Silky surface appears as fine fibers
- Adamantine bright, shiny, brilliant
- Pearly irradescent appearance
- Dull not reflecting a lot of light
- Earthy looking like earth
- Pitchy appearance of tar
- Submetallic
- Metallic

Diaphaneity

- A mineral's ability to transmit light is termed diaphaneity
- Ranges from transparent (light passes freely) to translucent (light partially passes well, see through thinner crystals) to opaque (light does not pass through unless extremely thin)

Size and color...

- A material's size can affect how color reflects off of it.
- Streak test is an indicator of this – some minerals (hematite for instance) can be different colors in hand sample, but the streak is always the same
- Sometimes the color is actually a distinctive measure of particle size

Fluorescence – UV light in yields photon emission in the visible Phospholuminescence – UV light excitation lasts seconds to minutes and releases visible light

Color Centers

- Typically an impurity present which is responsible for color or luminescence development
- When 2 ions are present with different charges, electron transfer between them can act as a color center → Sapphires are blue because Fe²⁺ → Ti⁴⁺ absorbs red light
 - The energy required to move the electron comes from light in the red part of the spectrum for sapphire