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This study presents the development and validation of a two-scale numerical method aimed at predicting
the mechanical behavior and the inter-granular fracture of nanocrystalline (NC) metals under deforma-
tion. The material description is based on two constitutive elements, the grains (or bulk crystals) and the
grain-boundaries (GBs). Their behaviors are determined atomistically using the quasicontinuum (QC)
method by simulating the plastic deformation of ½110� tilt crystalline interfaces undergoing simple shear,
tension and nano-indentation. Unlike our previous work (Péron-Lührs et al., 2013) however, the GB thick-
ness is here calibrated in the model, providing more accurate insight into the GB widths according to the
interface misorientation angle. In this contribution, the new two-scale model is also validated against
fully-atomistic NC simulation tests for two low-angle and high-angle textures and two grain sizes. A sim-
plified strategy aimed at predicting the mechanical behavior of more general textures without the need
to run more QC simulations is also proposed, demonstrating significant reductions in the computational
cost compared to full atomistic simulations. Finally, by studying the response of dogbone samples made
of NC copper, we show in this paper that such a two-scale model is able to quantitatively capture the dif-
ferences in mechanical behavior of NC metals as a function of the texture and grain size, as well as to
accurately predict the processes of inter-granular fracture for different GB character distributions. This
two-scale method is found to be an effective alternative to other atomistic methods for the prediction
of plasticity and fracture in NC materials with a substantial number of 2-D grains such as columnar-
grained thin films for micro-scale electro-mechanical devices.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Nanocrystalline (NC) materials are known to possess remark-
able physical and mechanical properties such as ultrahigh strength
compared with their coarse-grained counterparts [1–8]. At this
length scale, the plastic deformation is considered to change from
intragranular to intergranular by a mechanism in which the grain
boundary (GB) character distribution (GBCD) is promoted and con-
trols the NC mechanical behavior [9]. This transition from intra-
granular to intergranular or GB-mediated plasticity is assumed to
control the ductility and fracture behavior of NC materials. How-
ever, understanding the evolution of fracture in NC materials is
at its infancy experimentally, whereas a failure model at the
atomic level is still unavailable. This work aims to develop an
atomistically-informed multiscale model for the quantitative pre-
diction of the fracture behavior in NC solids.

Molecular dynamics (MD) simulations have already revealed
unusual mechanisms at low temperatures, such as GB sliding and
intragranular slip involving dislocation emissions and absorptions
at GBs [3,10–14], but suffer from the requirement to consider the
dynamics of all atoms, thus imposing drastic limitations on the size
of the simulated sample. On the other hand, continuum models,
which do not suffer from such limitation, have been mainly limited
to the description of grain size dependency [15], strain localization
[16,17] and failure processes [15,18]. It appears however that none
of these models can predict the plastic deformation of relatively
large NC structures while retaining sufficient precision to account
for the mechanisms involved at the nanoscale.

In a recent work [19], an original numerical multiscale approach
was proposed to gain predictive understanding of the mechanical
behavior of NC metals as a function of their GBCD. This model
assumes that GBs are embedded in a continuum matrix and
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incorporate full GB elasto-plastic constitutive laws determined by
atomistic simulations, thereby paving the way to the simulation
and characterization of intergranular fracture in NC materials
without the need to fully model all the grains atomistically. In this
two-scale framework, the material description was based on the
mechanical behavior of two constitutive elements, namely, bulk
crystals (or grains) and GBs. The constitutive laws for these two
constitutive elements were calibrated atomistically using the
quasicontinuum (QC) method [20,21]. An explicit FCC crystal plas-
ticity constitutive model [22] was used for the grains. This formu-
lation improves the original implicit formulation of the forest
dislocation hardening model proposed in Ref. [23] and enables
large scale computations. The crystal plasticity model was previ-
ously characterized using nanoindentation QC simulations [19].
GBs were treated as surfaces of discontinuities with a finite thick-
ness embedded in the continuum. In Ref. [19], parameters of the
GBs constitutive model, including plastic and damage responses,
were calibrated using the QC method by means of tensile and shear
tests, following Refs. [24,25], so as to account for both GB sliding
and GB opening modes. However, in that work, the thickness of
the GBs was arbitrarily taken as 1 nm [19]. The model is improved
here by calibrating the GB thickness parameter, validated against
full atomistic results, and tested for intergranular fracture
predictions.

Indeed, the objective of the present work is to demonstrate the
ability of this two-scale model in predicting the fracture of NC
metals for different textures and grain sizes. To this end, we first
validate the purely continuum model by comparing it with fully-
atomistic QC simulations for two NCs with two different textures,
namely high-angle (HA) and low-angle (LA), and two different
mean grain sizes. It is found that both models predict the same fail-
ure evolution in the GB networks for each texture and grain size.
Once the validation step is over, an adequate fitting of the HABs
calibration parameters according to their misorientation is pro-
posed. This fitting step allows for the simulation of larger NC with
a HA texture consisting of a substantial number of grains without
having to run all HABs QC simulations. As an illustration, two NC
dogbones, consisting of 103 grains and 251 GBs and presenting
the same HA texture with two different mean grain sizes are sub-
jected to tensile loading. These simulations highlight the ability of
the two-scale model to predict the intergranular fracture of larger
NCs than those conventionally encountered when dealing with
pure atomistic simulations, while saving computational time.

The paper is organized as follows. Section 2 presents the details
of the two-scale model and the constitutive laws used for grains
and GBs. Section 3 is devoted to the QC calibration; GBs QC simu-
lations and nanoindentation tests are presented with a particular
focus on the GB width effect. Section 3 also presents the QC results
fitting process designed to facilitate HA-type texture simulations.
In Section 4, the full calibrated two-scale continuum model is com-
pared to the fully-atomistic QC model for validation. Finally, this
methodology is applied in Section 5 to HA-type NC dogbones
simulations.

2. The two-scale model

2.1. Constitutive framework

In this section, the continuum framework with embedded GBs
is summarized, following the study in Ref. [9]. The main equations
for the bulk material are also presented, based on Refs. [22,23,26].
The reader is invited to refer to Ref. [19] for more details.

2.1.1. Grain-boundary constitutive model
The kinematics of the deformation mapping of a GB was devel-

oped by considering the GB as a surface discontinuity embedded in
the finite element discretization, and is based on the relative
motion of the two surfaces S+ and S�, corresponding to the facets
of the tetrahedra on the positive and negative sides, respectively,
as shown in Fig. 1a. To this end, the framework presented in Ref.
[27] is used. The local stress state is described by the Cauchy stress
tensor r whereas local information about the material deformation
is conveyed by the deformation gradient field �. The material mod-
els required to evaluate r in the bulk as well as the surface traction
t at the GBs are defined below. The mean deformation mapping is
defined as set in Ref. [27]

~u ¼ 1
2
ðuþ þu�Þ ð1Þ

In Eq. (1), ~u is the deformation mapping of the midsurface S,
and uþ and u� are the deformation mappings of the surfaces S+
and S�, respectively. By using Eq. (1) we recover the original defor-
mation mapping on both sides of the GB

u� ¼ ~u� 1
2
ðuþ �u�Þ ¼ ~u� 1

2
d ð2Þ

where

d ¼ sut ¼ uþ �u� ð3Þ

In Eq. (3), d is the displacement jump at the GB which can be
also defined as sut the difference between the displacements of
the surfaces S+ and S�, see Fig. 1a. S � ~uðS0Þ thus defines the
deformed GB and we can obtain directly the initial surface normal
N from the parametrization ~u ¼ ~uðsaÞ of S, where a ¼ 1 or 2 and
where the coordinates (s1; s2) are the natural coordinates of each
of the surface elements in a standard configuration, see Fig. 1b
and c. Indeed, using the covariant basis vectors (aa ¼ ~u

;sa
), one has

N ¼ a1 � a2

ka1 � a2k
ð4Þ

The displacement jumps can be decomposed into a GB opening
vector and a sliding vector as follows

dn ¼ ðd � NÞN ¼ ðN � NÞ � d ð5Þ

ds ¼ d� dn ¼ ðI � N � NÞ � d ð6Þ

It is assumed that this kinematics imposes a constant deforma-
tion gradient across the thickness h of the GB. This assumption is
justified by the low number of atoms within the GB. This gradient
of deformation can be expressed in the local orthonormal reference
frame

ðN1;N2;N3Þ ¼ ðða1=ja1jÞ; ðN � a1=jN � a1jÞ;NÞ ð7Þ

as

� ¼ dn � N3

h
N3 � N3|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
�n

þ ds � N1

h
1
2
ðN1 � N3 þ N3 � N1Þ þ

ds � N2

h
1
2
ðN2 � N3 þ N3 � N2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�s

ð8Þ

From Eq. (8), � is the sum of two quantities; a normal opening
part �n and a sliding part �s. In Ref. [19], h, naturally defining a
characteristic length scale of GBs in the model, was set to 1 nm fol-
lowing past works [28,29]. However, assigning a fixed value to h
does not account for the different thicknesses between each GB
type (HAB or LAB) and their impacts on the NC mechanical behav-
ior. Consequently, h is here treated as a parameter obtained from
the calibration process. The traction is eventually expressed as



Fig. 1. (a) Schematics of a GB element. Two tetrahedra belonging to two adjacent crystals separated by an interface element at the GB: S+ and S� are respectively the facets
corresponding to the tetrahedra on the positive and negative sides, as defined by the positive surface normal N, and S is the midsurface. The displacement jump d, its opening
dn and sliding ds components, as well as the GB thickness h are also indicated. (b) Deformed midsurface S and its associated curvilinear coordinate system as well as the
representation of the mean deformation mapping ~u. (c) Standard element configuration and natural coordinate system.
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t ¼ hr :
@�
@d
¼ r � N3 ð9Þ

Here, only the sliding component undergoes plastic deforma-
tions. In fact, when running GB opening simulations with QC, only
an elastic behavior, without plasticity, was observed until decohe-
sion progressively occurs [19]. This most likely arises from the per-
fect nature of the GB simulated with QC. Thus using a damage law
appears to be the best way to approximate the opening behavior of
GBs, and a damage parameter D is included in the GB opening
mechanical behavior. The elasto-plastic model described in Ref.
[9] is used to compute the sliding part rsl of the effective stress ten-
sor and is characterized by the yield stress tensor rp with

rp ¼ r0 1þ
��p

�0

� �
ð10Þ

where ��p is the equivalent plastic strain, r0 is the initial yield stress,
and �0 is the reference plastic strain. The damage parameter D is
evaluated from the normal opening dn � N. While this opening
remains relatively small, the opening stress rop remains smaller in
norm than the critical stress rc and D ¼ 0. Once rc is reached, D
increases in an irreversible way, and eventually reaches 1 for a crit-
ical opening dc . Finally the stress tensor is directly computed from

r ¼ ð1� DÞðrsl þ ropÞ ð11Þ
Table 1
Constitutive model parameters for pure copper.

Parameter Value (GPa) Parameter Value

C11 168:4 _c0 10 s�1

C44 75:4 m 0:005
C12 121:4 g0 f ðd; textureÞ
2.1.2. Grain constitutive model
We adopt the explicit formulation described in Ref. [22] for FCC

polycrystalline plasticity. This formulation somehow improves the
original implicit formulation of the forest dislocation hardening
model proposed in Ref. [23] by facilitating large scale computa-
tions. A summary of this formulation can be found elsewhere
[26] and we provide here the main equations of the model in order
to highlight the relevant parameters calibrated with the QC
method by nanoindentation tests.

In this framework the following power-law is used to describe
the shear rate deformation of each slip system a
_ca ¼
_c0

sa

ga

� �1
m � 1

� �
; if sa P 0

0; otherwise

8<
: ð12Þ

where _c0 is the reference shear strain rate, m the strain-rate sensi-
tivity exponent, and where ga and sa are the critical resolved shear
stress (CRSS) and the resolved shear stress on slip system a, respec-
tively. Based on statistical mechanics [30], the evolution of the flow
stresses in the case of multiple slip systems is found to be governed
by a diagonal hardening law

_ga ¼
X

b

hab _cb ð13Þ

where hab are the diagonal hardening moduli.
Table 1 provides the constitutive model parameters used in our

simulations for pure copper [22]. The remaining parameter, g0, is
the initial value for ga, and depends on the grain diameter d and
on the texture type (HA or LA) considered. This key value is cali-
brated from nanoindentation QC simulations.

3. Calibration with the QC method

In this section we summarize the method used to calibrate
atomistically the two-scale model aimed at simulating the NCs
for two different textures or GBCDs (HA and LA). To this end, both
the remaining bulk parameter (g0) for different grain sizes and the
GB parameters (r0; G; rc; dc; h) have to be calibrated for different
misorientations. We also provide the influence of the GB widths on
the behavior of the representative volume element (RVE) studied.
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Ultimately, we expose the QC results fitting process for larger HA-
type texture NC simulations.

The QC method allows for the prediction of the equilibrium con-
figuration of a system of atoms by energy minimization, given
externally imposed forces or displacements. However, all atoms
are not explicitly represented and regions of small deformation
gradients are treated as continuum media by use of the finite ele-
ment method. This method thus enables the modeling of large-
scale atomistic systems without loss of accuracy in the atomistic
areas while being faster than classical molecular simulations. This
method was used in Ref. [19] to calibrate GB and grain mechanical
behaviors.

At the nanoscale, the GB constitutive parameters were provided
by simulating the GBs as done in Refs. [24,25] where 2-D bicrystals
were subjected to shear and tensile loading conditions in order to
characterize the sliding and the opening/decohesion behavior,
respectively, see Fig. 2a. With the GB shearing simulations, the
maximum shear strength r0 and the shear modulus G were
extracted from the evolution of the shear stress as a function of
the applied shear strain. With regards to the GB decohesion behav-
ior, the opening critical stress rc as well as the critical opening dc

were calibrated from stress–strain curves.
The model of nanoindentation exposed in Refs. [21,31] was

used to simulate the interaction of partial dislocation motions with
GBs belonging to both HAB or LAB types. Misorientations lower
than 9	 were considered in this work as being LABs so as to corre-
spond to all the available LABs definitions in the literature [32–34].
We emphasize that all GBs present the same ½110� tilt axis. In order
to take into account the grain sizes, we proposed in Ref. [19] to
depart from the approach presented in Refs. [21,31] by varying
the distance hGB (pseudo grain size) separating the indented sur-
face from the GB, see Fig. 2b. For each simulation, the CRSS was
extracted and used as g0 which is the initial value for ga in the for-
est dislocation hardening model presented above. Using this cali-
bration model enabled to capture the CRSS of slip systems a not
only according to the GB nature (HAB or LAB) but also according
to the grain size. Further information on the computational tech-
niques used for grains and GBs calibrations is available in Ref. [19].

3.1. Effect of the GB width

The two-scale model was tested with different GB widths (h) for
both textures (LA and HA), and two grain sizes (3:28 and 6.56 nm)
on a RVE consisting of 16 grains and 34 GBs. The boundary condi-
tions used for these tensile tests and the RVE are presented in
Fig. 3. It is found that the RVE mechanical behavior highly depends
on the GBs widths. For example, Fig. 4 shows the stress–strain
curves resulting from GB widths h varying between 0:4 and 1 nm
Fig. 2. (a) QC sliding/opening model of one HAB. (b) QC nanoindentation
for all GBs. In the specific case of the LA texture and a mean grain
size of 6.56 nm, h is found to affect the elastic behavior, the limit of
elasticity, and the maximal stress that can be sustained before fail-
ure. Also, we assert here that, for all textures and grain sizes,
decreasing the GB thickness increases the overall stiffness. Conse-
quently, particular attention should be given to the calibration of
the GB width in order to properly simulate the mechanical behav-
ior of NC materials.

Unlike the work presented in Ref. [19] where h was arbitrarily
set to 1 nm, the models are here calibrated to include each GB
width using the QC method. The centrosymmetry parameter p,
see Ref. [35], is used to detect the crystallographic defects present
in the GBs. We identify h when the GB relaxation step required to
obtain the best GB energy configuration with QC is over. The
threshold chosen for this study is set to p ¼ 0:1 so that every atom
with a p-value lower than this threshold is considered as having a
perfect FCC crystal stacking. The determination of h was done by
considering only 80% of the bicrystal interface as this was done
for the calculation of the GB energy in Ref. [24], thus ensuring that
atoms near free surfaces presenting higher p-values were not
counted as part of the h calculation. h was taken as the distance,
or the width of the strip of material between the furthest atom
from the GB interface of the upper grain and the one of the lower
grain. In the LAB cases, the interface is generally considered as an
array of dislocations, involving less atoms in the GB structuring
than for HABs for which the reorganization is far more random.
One can argue that a more accurate determination of the GB width
may be based on the number of atoms involved in the reorganiza-
tion, but this would not fit with the thickness h of the model. By
using this method, HABs are found to be wider than LABs, see
Fig. 5. The obtained GB width is plotted in Fig. 6 as a function of
the GB misorientation. It is found that HAB widths spread from
12:612 to 16.645 Å, while LAB widths never exceed 11.29 Å and
always remain above 6.791 Å for the specific misorientations
considered.

With a view to facilitating the GB width calibration, we also
wanted to assess whether assigning a unique value to h for all
the GBs of a given texture would have consequences on the predic-
tions of the mechanical behavior. To this end, tensile loads are
applied to the same RVE, see Fig. 3. The stress–strain curves are
presented in Fig. 7. In the HA case and for both grain sizes, no sig-
nificant discrepancy is observed when h is set to 1.5 nm. Con-
versely, the LA texture behaves differently when h is set to
0.8 nm for all LABs. The elastic behavior and the limit of elasticity
are the same for both grain sizes but the strain-to-failure is sub-
jected to variations when the grain size is 6.56 nm. The deformed
configurations are presented in Fig. 8. For the HA texture, full GB
width calibration or setting h to 1.5 nm has no impact on the
model for one HAB with a pseudo grain size set to hGB ¼ 6:56 nm.



Fig. 3. NC boundary conditions and RVE. (a) Relaxation step, only for fully-atomistic model. (b) Loading conditions, used for both models. (c) RVE consisting of 16 grains.
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Fig. 5. GB width of two representative GB types where p is the centrosymmetry
parameter. The same scale for p is used to highlight the width difference. (a) HA. (b)
LA.
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evolution of the crack propagation, and this results in similar
strain-to-failures independently of the calibration method is. The
discrepancies that were observed for the LA texture concerning
the strain-to-failures echo the different paths being taken by the
crack when considering both calibration methods. From this, it
can be concluded that averaging GB width is possible for HABs
but not for LABs which are more sensitive to h.
3.2. QC fitting process

The GB simulations presented in Ref. [19] allow for the identifi-
cation of overall trends in the GB mechanical properties depending
on the degree of the GB misorientation, focusing on the GB shear
modulus G, the GB yield stress r0, the GB strain-to-failure dc and
the GB critical stress rc. We can also identify trends for h from
the results presented in Fig. 6. These trends are quite different
for each GB type, HA or LA. Within the HA range, it is possible to
extract trends from the QC results according to the GB misorienta-
tion while result variations are far too important within the LA
range, making accurate mechanical behavior predictions of LABs
unlikely and consequently in need of individual GB simulations.
In order to achieve reproducible results and avoid duplicating
work, we have chosen to fit the HAB results for which trends are
clearly identified. This fitting process paves the way for more com-
plex HA textures when a large number of grains is present, as it
will be the case in the next section. Fitted curves for all the param-
eters are presented in Fig. 9 and the corresponding equations are
reported in Table 2. With regards to the intragranular plasticity
and in order to bring together all the parameters needed for larger
simulations, we reproduce here in Fig. 9f the initial CRSS g0 of FCC



Fig. 7. Homogeneous width calibration vs. full GB width calibration for both grain textures and sizes: (a) HA texture, 3.28 nm; (b) HA texture, 6.56 nm; (c) LA texture, 3.28 nm
and (d) LA texture, 6.56 nm.

Fig. 8. Influence of h on the intergranular crack propagation. (a) HA texture with a
grain size equal 3.28 nm. (b) LA texture with a grain size equal to 6.56 nm.
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slip systems as a function of the pseudo grain size hGB as extracted
from nanoindentation tests [19].
4. Two-scale model vs. fully-atomistic model

In this section, we present the fully-atomistic model that will be
compared with the fully calibrated two-scale model of Section 3.
4.1. Fully-atomistic model

The two-scale continuum model fully calibrated for NC copper
is compared with the fully-atomistic one simulated with the QC
method. To this end, the fully-atomistic QC model is set for both
textures, HA and LA, and the two mean grain sizes 3:28 and
6.56 nm. All simulations consist of 16 grains, where dimensions
depend on the mean grain size: 117 Å � 117 Å � 2.55619 Å and
233 Å � 233 Å � 2.55619 Å for a grain size of 3.28 nm and
6.56 nm, respectively.

The polycrystalline structure was constructed as follows. The
GBCD was first created using a Voronoï diagram construction. All
atoms were added using the Bravais lattice vectors starting from
the 16 reference atoms. A common tilt axis along the ½110� direc-
tion was assigned to each grain and in-plane misorientations were
set according to the texture type. Periodic boundary conditions
were applied along the out-of-plane direction in the entire model.
Consequently, this work focuses on 2-D columnar-grained micro-
structures, and as such, plastic deformation can potentially be dif-
ferent to those that could be observed for 3-D polycrystalline
structures. However, the results are expected to be qualitatively
similar in the plane-strain state.

The total energy was minimized using the conjuguate gradient
method until the addition of out-of-balance forces was found to be
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Table 2
Fitting values of a, b and c in the polynomial equation aDW2 þ bDWþ c for all GB
parameters.

a b c

h (Å) �0.00273431 0.239748 10.5098
G (GPa) 0.0153508 �1.40075 59.1799
r0 (GPa) 0.00153539 �0.130957 3.65036
dc (nm) 0.000228623 �0.0196728 2.10974
rc (GPa) 0.000931509 �0.108071 11.0947
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lower than 10�3 eV Å�1. All structures were relaxed under zero
pressure to obtain the lowest state of energy. During this relaxa-
tion step, all atoms at the bottom of the sample were fixed in all
directions while those on the left and the right sides were fixed
in the X- and Z-directions, see Fig. 3a. These strong boundary con-
ditions were set up so as to avoid the complete crystallographic
reorganization of NCs, especially in the case of the LA type where
GBs can disappear after relaxation. Atoms at the top of the samples
were then subjected to tensile loadings, see Fig. 3b, by means of
incremental displacements of 0.25 Å in the Y-direction until the
sample reached a deformation of 20%. Between each loading step
a new energy minimization was performed. Moreover, the
centrosymmetry parameter p [35] was computed at each loading
step to allow for the detection of planar defects during deforma-
tion. Both HA and LA textures, with mean grain sizes equal to
3:28 and 6.56 nm, are presented with this p-value in Figs. 10 and
11, respectively. Although the relaxation step implies a slight dis-
tortion in the grain shape, it appears that GBCDs retain overall their
HA or LA character.

It is worth noting that the QC method was originally conceived
to model atomistic systems without explicitly treating every atom
in the problem by judiciously eliminating unnecessary degrees of
freedom. In doing so, the QC method reduces calculation times
while keeping an atomistic description where needed. In this work,
this aspect of QC was not used for the fully-atomistic simulations
as the small size of the grains requires all the atoms to be modeled.
Therefore, no degree of freedom was eliminated which implies a
significant slowdown of QC.
4.2. Results

For both models, the yield stresses were determined as being
the stresses at which the residual plastic strain reaches 0.2%.
Fig. 12 shows the simulated stress–strain curves of both models



Fig. 10. Snapshots for both HA and LA textures for a mean grain size of 3.28 nm, before and after the relaxation step.

Fig. 11. Snapshots for both HA and LA textures for a mean grain size of 6.56 nm, before and after the relaxation step.
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for both HA and LA textures, and for both grain sizes with the same
loading conditions.

In the QC models, with both textures, the simulation cells ini-
tially deform elastically until reaching a critical level of stress. In
the HA texture case, yield stresses reach 8.49 GPa and 8.79 GPa
for a mean grain size of 3.28 nm and 6.56 nm, respectively, while
9.78 GPa and 9.89 GPa are reached in the LA cases, for a mean grain
size of 3.28 nm and 6.56 nm, respectively. For each texture, it
appears that the smaller the grain size the sooner the yield point,
corresponding to the material softening when the grain size
decreases, and thus showing the ability of the fully-atomistic QC
model to capture the reverse Hall–Petch (RHP) effect.

Similar observations can be made when considering the two-
scale model results, for which textures with small grains deviate
faster from the elastic regime in agreement with Ref. [9]. For a
grain size of 6.56 nm, yield stresses in HAB and LAB textures are
5.55 GPa and 8.11 GPa, respectively, and decrease to 4.26 GPa
and 7.93 GPa for a grain size of 3.28 nm. It is worth noting that
these yield stresses are higher than those observed in a recent
work [19] for which boundary conditions were less constrained.
Additionally, yield stresses in the HAB textures are always lower
than in the LAB ones which is true for both models.

When comparing stress–strain curves obtained with both mod-
els, a good agreement is achieved qualitatively for different tex-
tures and grain sizes. However, the two-scale model is associated
in each case with yield stresses lower than those observed in the
fully-atomistic model, due to the role of triple junctions, i.e. the
junctions between three grains, which are not taken into account
in the two-scale model. These triple junctions, absent in the GB
decohesion calibration of the two-scale model, seem to be respon-
sible for a larger GB stiffness by reducing the GB motion freedom.
Therefore, our two-scale model may underestimate the GB
Fig. 12. Comparison of the stress–strain curves of both models. (a) HA texture for a 3.28
6.56 nm.
stiffness in opening, and thus underestimate the global stiffness
of the NC model. This hypothesis is also supported by the decrease
of the NC stiffnesses in both textures when the grain size decreases
from 6.56 nm to 3.28 nm in the two-scale model, see Fig. 12a and c.
Indeed, the effect of the absence of the triple junction calibration in
the two-scale model seems even more important when the grains
are smaller. In that case, the GB lengths involved are smaller which
implies a higher proportion of triple junctions in the NC and conse-
quently, an apparently softer NC material.

Deformed configurations for both models are presented in
Fig. 13 at the yield point and at � ¼ 10%. At yield point, remark-
ably, a very good agreement is observed in all cases and the crack
initiation occurs at the same GBs if we compare both models. For
10% deformation, the GB networks responsible for the failure of
the RVEs remain closely connected. We therefore demonstrate
here that the two-scale model makes it possible to predict accu-
rately the weakest links and crack initiation loci of these GB
networks.

Regarding the calculation time, clear benefits are found when
using the two-scale model. On the one hand, the computation time
required to fully calibrate the two-scale model of a complete HA
texture for an average grain size of 6.56 nm is about 89 h with a
3.33 GHz CPU, to which must be added the time required to apply
tensile load on this RVE (7451 tetrahedral elements), i.e. 15 h and
30 min, totaling 104 h and 30 min. On the other hand, the fully-
atomistic QC model requires about 95 h with the same device to
compute the same texture. For this specific RVE size, both methods
are roughly equivalent but the interest of using such a two-scale
method appears obvious for larger structures as in next section,
when studying different loading with the same structure, or when
using Fig. 9 in the HA case, instead of repeating all the bicrystal
simulations.
nm mean grain size. (b) HA texture, 6.56 nm. (c) LA texture, 3.28 nm. (d) LA texture,



Fig. 13. Deformed configurations for both models at yield point and for a � ¼ 10% deformation.
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5. Dogbone study

5.1. Dogbone description

To illustrate the efficiency of the two-scale method when deal-
ing with a large number of grains, tensile tests were performed on
two large dogbones presenting mean grain sizes of 3.28 nm (‘‘A’’)
and 6.56 nm (‘‘B’’). The two structures consisted of 103 grains
and 251 GBs. The misorientation distribution is presented in
Fig. 14. For this texture, only one GB belonged to the LA type and
all the other ones belonged to the HA type, thus giving a proportion
of 99:6% for the HABs in the texture. Due to the difficulty of fitting
the LAB features, the QC calibration was performed for this misori-
entation. However, the mechanical responses of all the HABs were
calibrated using the fitting parameters in Fig. 9. Both meshes con-
tained 2201 nodes for 8934 tetrahedral elements and 5458 nodes
for 21,162 tetrahedral elements, respectively. Dimensions and ten-
sile boundary conditions are presented in Fig. 15.
5.2. Dogbone results

The stress–strain curves achieved for the tensile tests are pre-
sented in Fig. 16. According to these curves, we see that if we con-
sider the whole deformation of each dogbone, the elastic is
predominent in the case B (larger grains) whereas the plastic part
is more pronounced in the case A (smaller grains). Moreover, A
appears to be less rigid than B. As a result, B fails for smaller strain
than A. These last assertions confirm the ability of the model to
capture the RHP effect. Snapshots presented in Fig. 17 represent
the deformed configurations of both dogbones A and B for three



Fig. 15. Boundary conditions and dogbone dimensions. (a) Tensile loading boundary conditions. Nodes are fixed in the Z directions. Dimensions of dogbones with a grain size
set to (b) 3.28 nm and (c) 6.56 nm.
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Fig. 17. Deformed configurations of dogbones A and B. Three steps of deformation
are considered: step 1 is elastic, step 2 is plastic and step 3 is at maximum strength.
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different steps: step 1 is taken during elastic deformation, step 2 is
taken in the plastic part of the deformation and finally, step 3 cor-
responds to the maximum strength experienced by the dogbones.
We have chosen to show within the grains g � g0, where g0 and g
are the initial and current CRSS, respectively, as intragranular plas-
ticity is known to be absent when this variable is equal to zero. GB
sliding is significantly more important in case A as shown in step 3,
coupled to the high proportion of intergranular plasticity in the
deformation process of A. In contrast, comparing A step 2 and B
step 3 shows that even for a lower strain in B (4.26% vs. 5.01%
for A) g � g0 is overall higher in B. In fact, while intragranular plas-
ticity seems to be more homogeneous in grains of A, many black
spots on B indicate a more pronounced intragranular activity. This
highlights the higher intragranular plasticity occuring in B. In sum-
mary, the two-scale model confirms that the failure mechanism in
NC dogbones is more predominantly intragranular for large grain
sizes and intergranular at smaller grain sizes.
6. Conclusion

In this work, a two-scale model atomistically-informed at the
lowest scale has been proposed. The calibration of the GBs and bulk
crystals was done by means of GB sliding and opening; and nano-
indentation QC simulations, respectively, enabling the creation of a
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climate of competition between intergranular and intragranular
plasticity.

The observation of the relaxed ½110� tilt GBs resulting from QC
simulations allowed for the obtention of the GB width distribution
as a function of the GB misorientation. It is concluded that HABs
are wider than LABs. Moreover, the simulations of RVEs consisting
of 16 grains exhibited an almost identical behavior at the polycrys-
talline level when using average width of 1.5 nm for all HABs. In
turn, LABs were found to be more sensitive to width calibration
and still require to be calibrated individually in a polycrystalline
aggregate.

Built up on previous work [19], mechanical properties evolu-
tion equations as a function of GB misorientation have been pro-
posed for HABs, thus avoiding future QC simulations and
significantly improving the calculation time of future continuum
simulations.

The prediction of the evolution of the crack propagation in both
two-scale and fully-atomistic models is similar. However, yield
stresses measured with the two-scale model are found to be sys-
tematically smaller than in QC simulations. This discrepancy is
believed to be due to the absence of triple junctions consideration
when calibrating the GB opening with QC, thus underestimating
the GB critical stresses rc . The smaller the grain size, the larger
the proportion of triple junctions, and the softer the structures pre-
dicted by the two-scale model. These triple junctions [36,37] are
also already known to play a major role in the propagation of inter-
granular cracks and can nucleate, block, deviate or transmit them
[38]. Besides, special mechanisms such as GB migration can be
responsible for the growth of new grains during straining [39] at
triple junctions. Concentrations of stress at the triple junctions
observed in the two-scale model cause the appearance of intra-
granular plasticity, surely increased, but that does not allow
reflecting the specific nano-mechanisms involved in this area. Thus
and as for the GBs, the particular mechanisms taking place in the
triple junctions may also be considered by adding special elements
calibrated with atomistic simulations in order to improve the
model.

It must finally be emphasized that the two-scale model stresses
remain overvalued compared to dynamics simulations as noticed
in Ref. [19]. This discrepancy arises from the 2-D nature of the
QC method and from the fact that no thermally activated processes
are accounted for in the simulations.

The results are also overvalued compared to experiments where
nanoscale voids are present and using the void-induced stress
model recently presented in Ref. [40] would improve the mechan-
ical calibration of GBs.
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